English, asked by kaleatharv100, 7 months ago

cot^-1
(4-x-2x^2/3x+2) find Dy/dx

Answers

Answered by sijisunilpanoli
0

Answer:

Sorry guy

I don't know the answer

Answered by knjroopa
0

Explanation:

Given Cot^-1(4-x-2x^2/3x+2) find Dy/dx

  •     Let y = Cot^-1(4-x-2x^2/3x+2)
  •            Since  
  •                      cot^-1 x = tan^-1 1/x
  •         So we can write this as  
  •                      y = tan^-1 (3x + 2) / (4 – x – 2x^2)
  •                   So we can write this as  
  •                      y = tan^-1 2x + x + 3 – 1 / 1 + 3 – x – 2x^2
  •                     y = 2x + x + 3 – 1 / 1 – (2x^2 + x – 3)
  •                      y = 2x + x + 3 – 1 / 1 – (2x^2 + 3x – 2x – 3)
  •                     y = 2x + x + 3 – 1 / 1 – ( 2x + 3) (x – 1)
  •                        So we have
  •                       y = (2x + 3) + (x – 1) / 1 – (2x + 3) (x – 1)
  •                   So we get
  •                        y = tan^-1 (2x + 3) + tan^-1 (x – 1)
  •                     Differentiating with respect to x we get
  •                         dy / dx = d/dx (tan^-1 (2x + 3) + tan^-1 (x – 1)
  •                         Now d/dx (tan^-1 2x + 3)  
  •                            = 1/1 + (2x + 3)^2 . d/dx (2x + 3)
  •                             = 1/1 + (2x + 3)^2 (2 x 1 + 0)
  •                                = So we get 2 / 1 + (2x + 3)^2
  •                         Now d/dx (tan^-1 (x – 1))
  •                                = 1 / 1 + (x – 1)^2 d/dx (x – 1)
  •                                 = 1 / 1 + (x – 1)^2 (1 – 0)
  •                                   = so we get  1 / 1 + (x – 1)^2
  • So dy / dx = 2 / 1 + (2x + 3)^2 + 1 / 1 + (x – 1)^2

Reference link will be

https://brainly.in/question/15531711

Similar questions