Math, asked by sadiq5629, 11 months ago

cot^2 A- cot^2B=cos^2A-cos^2B/sin^2A × sin^2B=cosec^2 A-cosec^B​

Answers

Answered by Anonymous
7

Step-by-step explanation:

 \bf\huge \mathfrak{Question}

 \bf \: cot^2 A - cot^2B = cos^2A -  \frac{cos^2B}{sin^2A}  × sin^2B  = cosec^2A  - cosec^B

 \bf\huge \mathfrak{solution}

 \bf \:cot^2A - cot^2B =cos^2A/sin^2A - cos^2B/sin^2B

 \bf \:=>(cos^2Asin^2B - sin^2Acos^2B)/sin^2ASin^2B

 \bf \: =>(cos^2A-cos^2Acos^2B-cos^2B +cos^2Acos^2B)/sin^2Asin^2B

 \bf \:=> (cos^2A-cos^2B)/sin^2Asin^2B

 \bf\huge \mathfrak{PROVED}

Similar questions