Cot^4[30]-sin^2[60]+sec^2[45]
Answers
Answered by
4
Solution:
cot⁴30° - sin²60° + sec²45°
We know that
- cot30° = √3
- sin60° = √3/2
- sec45° = √2
Substituting the values we have
→ ( √3 )⁴ - [√3/2]² + ( √2 )²
→ [(√3)²]² - ( √3 )²/2² + 2
→ 3² - 3/4 + 2
→ 11 - ¾
→ 44 - 3/4
→ cot⁴30° - sin²60° + sec²45° = 41/4
Hence, cot⁴30° - sin²60° + sec²45° = 41/4
__________________________
Knowledge enhancer:
Identities:
♦ sin²A + cos²A = 1
♦ sec²A - tan²A = 1
♦ cosec²A - cot²A = 1
Formulas:
♦ sin(A + B) = sinA.cosB + cosA.sinB
♦ sin(A - B) = sinA.cosB - cosA.sinB
♦ cos(A - B) = cosA.cosB + sinA.sinB
♦ cos(A + B) = cosA.cosB - sinA.sinB
♦ tan(A + B) = sin(A + B)/cos(A + B)
=> sinAcosB + cosA.sinB/cosA.cosB - sinA.sinB
Answered by
6
= ?
Let's look at some values
Here, '' stands for undefined(not defined) values.
Putting the value of each
Taking LCM 4
Hence
The value of
Similar questions