Cot (45-a )=cos2a/1-sin2a
Answers
Answered by
7
Hi ,
Cot( A - B )
= ( CotA cotB+1 ) / ( cotB-cotA)
Now ,
LHS = cot( 45 - A )
= ( CotAcot45° + 1 )/( cotA - cot45 )
= ( CotA +1 ) /( cotA - 1 )
= ( CosA/sinA + 1 )/( cosA/sinA - 1 )
= ( CosA + sinA ) / ( cosA - sinA )
= (CosA+sinA)²/(cosA+sinA)(cosA-sinA)
= (cos²A+sin²A+2sinAcosA)/(cos²A-sin² A)
= (1 + 2sinAcosA) / cos2A
= ( 1 + sin2A ) /cos2A
I hope this helps you.
:)
Cot( A - B )
= ( CotA cotB+1 ) / ( cotB-cotA)
Now ,
LHS = cot( 45 - A )
= ( CotAcot45° + 1 )/( cotA - cot45 )
= ( CotA +1 ) /( cotA - 1 )
= ( CosA/sinA + 1 )/( cosA/sinA - 1 )
= ( CosA + sinA ) / ( cosA - sinA )
= (CosA+sinA)²/(cosA+sinA)(cosA-sinA)
= (cos²A+sin²A+2sinAcosA)/(cos²A-sin² A)
= (1 + 2sinAcosA) / cos2A
= ( 1 + sin2A ) /cos2A
I hope this helps you.
:)
Similar questions