cot 9 + cot 81 + cot 27 + cot 63
Answers
Answered by
18
cot 9° + cot 27° + cot 63° + cot 81°
= (cot9° + cot 81°) + (cot 27° + cot 63°)
= (sin81°cos9° + cos 81°sin9°)/(sin9°sin81°) + (sin63°cos27° + cos 63°sin27°)/(sin27°sin63°)
= sin90°/(sin9°sin81°) + sin90°//(sin27°sin63°
= 2/(cos72°) + 2/(cos36°) = 8/(√5 - 1) + 8/(√5 + 1) = 16√5/4 = 4√5.
Answered by
7
Step-by-step explanation:
We have,
To find, the value of
∴
Using trigonometric identity,
Using trigonometric identity,
Hence,
Similar questions