Math, asked by tanvichaudhari340, 11 months ago

cot(A+B)=1 , cosec(A-B) =2 then find A and B​

Answers

Answered by Anonymous
2

Answer:

\huge{\underline{\red{\rm{AnswEr:}}}}

GIVEN:

 \cot(a + b)  =  1 \\ \csc(a - b) = 2

TO FIND :

FIND A AND B

PROOF :

 \cot(a + b)  = 1 \\  \cot(a)  +  \cot(b)  = 1  \:

THEREFORE

 \csc(a - b)  = 2 \\  \csc(a)  -  \csc(b)  = 2 \\  \csc(a)  = 2  +  \csc(b)

 \frac{1}{ \sin(a) }  = 2 +  \frac{1}{ \sin(b) }  \\  \frac{1}{ \sin(a) }  =  \frac{2 \sin(b) }{ \sin(b) }  \\  \frac{1}{ \sin(a) }  =  \sin(b)

SO ;

 \frac{ \cos(a) }{ \sin(a) }  +  \frac{ \cos(b) }{  \sin(b)  }  = 1 \\   \frac{ \sin(b)  \times  \cos(a)  +  \cos(b) \times  \sin(a)  }{ { \sin(a + b) }^{2} }  = 1 \\

HOPE THAT HELPS

Similar questions