Cot cube theeta divideny one plus cot square theeta plus tan cube theeta divide by one plus tan square theeta is equal to sec theeta .cosec theeta - 2.sin theeta .cos theeta
Answers
Answered by
0
Step-by-step explanation:
Step-by-step explanation: Given,
(cot³θ/1+cot²θ)+(tan³θ/1+tan²θ) = secθ cosecθ - 2 sinθ cosθ
L.H.S
(cot³θ/1+cot²θ) + (tan³θ/1+tan²θ)
=(cot³θ/cosec²θ)+(tan³θ/sec²θ) [sec²θ-tan²θ=1 and cosec²θ-cot²θ=1]
=cos³θ/sin³θ*sin²θ + sin³θ/cos³θ*cos²θ
=cos³θ/sinθ+sin³θ/cosθ
={(sin²θ)²+(cos²θ)²}/sinθcosθ
={(sin²θ+cos²θ)² - 2 sin²θ cos²θ}/sinθcosθ [∵ a²+b²= (a+b)²-2ab]
={1- 2 (sinθcosθ)}/sinθcosθ
=1/sinθcosθ - (2sinθcosθ)²/sinΘcosΘ
=secθcosecθ - 2 sinθcosθ
Similar questions