Math, asked by Harmansangha, 1 year ago

cot inverse{√ 1+ sinx+ √ 1- sinx}/{ √1+sinx-√1-sinx}

Answers

Answered by harihar1
66
Solution for this question
Attachments:

Harmansangha: ok sir ! but this is differentiate so , is it rght way .
harihar1: yes
harihar1: now you can differentiate
harihar1: then answer will be 1/2
Harmansangha: okay thanku sir.
Answered by throwdolbeau
43

Answer:

The value of the given expression is :

\bf\frac{x}{2}

Step-by-step explanation:

\cot^{-1}(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-sin x}})\\\\\text{Rationalizing the above expression, We get , }\\\\\implies \cot^{-1}(\frac{1+\sin x+1-\sin x+2\sqrt{1-\sin^2x}}{1+\sin x-1+\sin x})\\\\\implies \cot^{-1}(\frac{2+2\cos x}{2\sinx})\\\\\implies \cot^{-1}(\frac{1+\cos x}{\sin x})\\\\\implies \cot^{-1}(\frac{2\cos^2\frac{x}{2}}{2\cos\frac{x}{2}\cdot\sin\frac{x}{2}})\\\\\implies \cot^{-1}(\cot\frac{x}{2})\\\\\implies \frac{x}{2}

Hence, The value of the given expression is :

\bf\frac{x}{2}

Similar questions