Math, asked by chandan204, 1 year ago

cot inverse 3 + cosec inverse root 5

Answers

Answered by 2twitterhdgfgh
12
I am a bit more about what do we
Answered by harendrachoubay
14

\cot^{-1} 3+\csc^{-1} \sqrt{5}=\dfrac{\pi}{4}

Step-by-step explanation:

We have,

\cot^{-1} 3+ \csc^{-1} \sqrt{5}          ..... (1)

To find, \cot^{-1} 3+ \csc^{-1} \sqrt{5}=?

Let \csc^{-1} \sqrt{5}=\theta

\csc \theta= \sqrt{5}=\dfrac{h}{p}

\tan \theta=\dfrac{1}{\sqrt{5-1}} =\dfrac{1}{2}

Now, equation (1) becomes

\tan^{-1} \dfrac{1}{3}+\tan^{-1} \dfrac{1}{3}

=\tan^{-1} \dfrac{\dfrac{1}{3}+\dfrac{1}{2}}{1-\dfrac{1}{3}.\dfrac{1}{2}}

[ ∵\tan^{-1} A+\tan^{-1} B=\tan^{-1} \dfrac{A+B}{1-AB}]

=\tan^{-1} \dfrac{\dfrac{3+2}{6}}{\dfrac{6-1}{6}}

=\tan^{-1} (1)

=\tan^{-1} \tan \dfrac{\pi}{4}

=\dfrac{\pi}{4}

Hence, \cot^{-1} 3+ \csc^{-1} \sqrt{5}=\dfrac{\pi}{4}

Similar questions