Math, asked by aaravchaudhary012, 11 months ago

cot theta-cos theta/cos theta + cos theta is= sec^2 theta - 2 cos theta + cot^2 theta​

Answers

Answered by Anonymous
0

\bold {ax}^{2}  + \bold {bx} \:  + \bold c \:  = \bold 0 \\ \\ \bold {sin \alpha  \times cos \alpha}  =  \bold {\frac{ - b}{a} } \\ \\ \bold {sin \alpha  \times cos \alpha}  =  \bold {\frac{c}{a}}  \\ \\ \bold {(sin \alpha  + cos \alpha )^{2}}  = \bold {{sin}^{2} \alpha  + 2sin \times cos \alpha  + \: {cos}^{2} \alpha}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \ \:  \:  \:  \:  \: \:  =  \bold {{sin}^{2} \alpha  +  {cos}^{2} \alpha  + 2sin \times cos \alpha}  \\ \\ \bold {( \frac{ - b}{a})^{2}} = \bold {1 +  \frac{2c}{a}} \\ \\   \bold {\frac{ {b}^{2} }{ {a}^{2} }} \:  = \bold {1 +  \frac{2c}{a}}  \\   \\ \bold {{b}^{2}}  =    \bold {\frac{ {a}^{2}(a + 2c) }{a}}  \\  \\  \bold {{b}^{2}}  =  \:  \bold {{a}^{2}}  +  \: \bold {2ac}

Answered by DeviIQueen
1

Answer:

♦ Wall painted by Malala = \bold{\frac{7}{12}}

12

7

♦ Wall painted by Geetha = \bold{\frac{21}{36}}

36

21

♦ \bold{\frac{21}{36}}

36

21

be also written as \bold{\frac{7}{12}}

12

7

♦ So in this way they both painted same fraction of the wall i.e. \bold{\frac{7}{12}}

12

7

___________________________________________________

Similar questions