(cot theta/cot theta -cot3theta) + ( tan theta/tan theta -tan 3theta) is equal to?
Answers
Answered by
1
Answer:it was very tough yar, hope it ll help u.
Step-by-step explanation:
Attachments:
Answered by
0
Cotθ /( Cotθ - Cot³θ) + Tanθ /( Tanθ - Tan³θ) = 1
Step-by-step explanation:
Cotθ /( Cotθ - Cot³θ) + Tanθ /( Tanθ - Tan³θ)
= Cotθ /( Cotθ(1 - Cot²θ)) + Tanθ /( Tanθ(1 - Tan²θ) )
= 1/(1 - Cot²θ) + 1/(1 - Tan²θ)
= 1/(1 - Cos²θ/Sin²θ) + 1/(1 - Sin²θ/Cos²θ)
= Sin²θ/(Sin²θ - Cos²θ) + Cos²θ/(Cos²θ - Sin²θ)
= Sin²θ/(Sin²θ - Cos²θ) - Cos²θ/(Sin²θ - Cos²θ)
= (Sin²θ - Cos²θ)/(Sin²θ - Cos²θ)
= 1
Cotθ /( Cotθ - Cot³θ) + Tanθ /( Tanθ - Tan³θ) = 1
Learn more:
prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx
https://brainly.in/question/3338788
sin x + cos x -1
https://brainly.in/question/12563868
cosX-4sinx=1 then sinx+4cosx[tex] cos(x) - Brainly.in
https://brainly.in/question/8892362
Similar questions