Math, asked by pratika785, 1 year ago

Cot theta - tan theta = 2 cos^2 theta - 1 / sin theta. Cos theta

Answers

Answered by Anonymous
4
\huge\sf{\underline{\underline{Solution:}}}


\sf{R. H. S. = \frac{2Cos^{2}\theta - 1 }{Sin \: \theta . \: Cos \: \theta}}

\sf{ = \frac{2Cos^{2}\theta - ( {Sin}^{2} \theta + {Cos}^{2}\theta) }{Sin \: \theta \: . \: Cos \: \theta}}

\sf{ = \frac{2 {Cos}^{2}\theta - {Sin}^{2}\theta - {Cos}^{2} \theta }{Sin \: \theta \: . \: Cos \: \theta }}

\sf{ = \frac{ {Cos}^{2} \theta - {Sin}^{2} \theta}{Sin \: \theta \: . \: Cos \: \theta}}

\sf{ = \frac{ {Cos}^{2}\theta }{Sin \: \theta \: . \: Cos \: \theta} - \frac{ {Sin}^{2}\theta }{Sin \: \theta \: . \: Cos \: \theta}}

\sf{ = \frac{Cos \: \theta}{Sin \: \theta} - \frac{Sin \: \theta}{Cos \: \theta}}

\sf{= Cot \: \theta - Tan \: \theta}

\sf{= L. H. S.}

\huge\sf{\underline{\underline{Hence\: proved.}}}
Answered by Dhiyanesh05
2

Here is your answer

Give thumbs up if you're satisfied

Attachments:
Similar questions