Math, asked by shreyasasware94, 3 months ago

cot theta +tan theta =co sec theta sec theta​

Answers

Answered by AestheticSky
12

Identies used:-

  • Sin²Ø+Cos²Ø = 1

  • 1/CosØ = SecØ

  • 1/SinØ = CosecØ

Solution:-

 \implies\cot( \theta)  +  \tan( \theta)  \\  \\\implies  \frac{ \cos( \theta) }{ \sin( \theta) }  +  \frac{ \sin( \theta) }{ \cos( \theta) }  \\  \\   \implies\frac{\cos ^{2} ( \theta)  +  \sin ^{2} ( \theta) }{ \sin( \theta) \cos( \theta)  }  \\  \\  \implies\frac{1}{ \sin( \theta) \cos( \theta)  }  \\  \\   \implies\cos( \theta)  \sec(  \theta)

Answered by BrainlyRish
10

Given : \star \bf \cot \theta + \tan \theta = \cosec \theta  \sec \theta \\ \\

Exigency To Prove : \longmapsto \sf \cot \theta + \tan \theta = \cosec \theta  \sec \theta \\ \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \star\:\: \bf \cot \theta + \tan \theta = \cosec \theta - \sec \theta \\ \\

Here ,

  • \star \bf {L.H.S} = \sf \cot \theta + \tan \theta  \\ \\
  • \star \bf {R.H.S} = \sf \cosec \theta  \sec \theta  \\ \\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \: the \: L.H.S \:  \::}}\\

  • \star \bf {L.H.S} = \sf \cot \theta + \tan \theta  \\ \\

:\implies\cot \theta + \tan \theta \\ \\ \sf{As,\;We\:know\:that\::}\\\\ \star \tan \theta = \dfrac{\sin \theta }{\cos \theta }\\\\ \bf And :\\\\\star \cot \theta = \dfrac{\cos \theta }{\sin \theta }\\\\  :\implies \dfrac{ \cos \theta }{ \sin \theta } + \frac{ \sin \theta }{ \cos \theta } \\ \\ \implies\frac{\cos ^{2}  \theta + \sin ^{2}  \theta }{ \sin \theta \cos \theta }\\\\ \sf{As,\;We\:know\:that\::}\\\\ \star sin^2\theta + \cos^2 \theta = 1 \\ \\ :\implies\frac{1}{ \sin \theta \cos \theta } \\ \\:\implies \dfrac{1}{\sin\theta} \dfrac{1}{\cos \theta } \\\\ :\implies\bf L.H.S = \cosec \theta \sec \theta \\\\

Therefore,

  • \star \bf {L.H.S} = \sf \cosec \theta  \sec \theta  \\ \\
  • \star \bf {R.H.S} = \sf \cosec \theta  \sec \theta  \\ \\

As , We can see that ,

  • L.H.S = R.H.S

⠀⠀⠀⠀⠀\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\boxed{\begin{array}{cc} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{array}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions