Math, asked by shrutijaiswal9639, 11 months ago

cot theta -tan theta over 1 - 2 sin square theta is equal to cosec theta into sec theta​

Answers

Answered by Grimmjow
47

\mathsf{Given :\;\dfrac{cot\theta - tan\theta}{1 - 2sin^2\theta}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{cos^2\theta + sin^2\theta = 1}}}

\mathsf{Substitute\;(cos^2\theta + sin^2\theta)\;in\;the\;place\;of\;1\;in\;denominator}

\mathsf{\implies \dfrac{cot\theta - tan\theta}{cos^2\theta + sin^2\theta - 2sin^2\theta}}

\mathsf{\implies \dfrac{cot\theta - tan\theta}{cos^2\theta - sin^2\theta}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{cot\theta = \dfrac{cos\theta}{sin\theta}}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{tan\theta = \dfrac{sin\theta}{cos\theta}}}}

\mathsf{\implies \dfrac{\dfrac{cos\theta}{sin\theta} - \dfrac{sin\theta}{cos\theta}}{cos^2\theta - sin^2\theta}}

Take LCM among the fractions in the Numerator :

\mathsf{\implies \dfrac{\dfrac{cos^2\theta - sin^2\theta}{sin\theta.cos\theta}}{cos^2\theta - sin^2\theta}}

\mathsf{\implies \dfrac{cos^2\theta - sin^2\theta}{sin\theta.cos\theta(cos^2\theta - sin^2\theta)}}

\mathsf{\implies \dfrac{1}{sin\theta.cos\theta}}

\mathsf{\implies \bigg(\dfrac{1}{sin\theta}\bigg)\bigg(\dfrac{1}{cos\theta}\bigg)}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{co{sec}\theta = \dfrac{1}{sin\theta}}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{{sec}\theta = \dfrac{1}{cos\theta}}}}

\implies \large\boxed{\mathsf{co{sec}\theta.{sec}\theta}}

Answered by sahiduzzamansaied
4

Step-by-step explanation:

its your answer.. hope it will be helpful for you ..

Attachments:
Similar questions