Math, asked by crcharu323, 7 months ago

Cot(x+iy) separate real and inaginery parts

Answers

Answered by pulakmath007
19

SOLUTION

TO DETERMINE

To separate real and Imaginary parts

cot(x + iy)

EVALUATION

We know that

 \sf{ \sin (x + iy) =  \sin x \cosh y + i \cos x \sinh y}

 \sf{ \cos (x + iy) =  \cos x \cosh y  -  i \sin x \sinh y}

  \sf{  \therefore \:  \: \cot (x + iy) }

 \displaystyle \:  \sf{ =  \frac{ \cos (x + iy)}{ \sin (x + iy)}  }

 \displaystyle \:  \sf{ =  \frac{  \cos x \cosh y  -  i \sin x \sinh y}{  \sin x \cosh y + i \cos x \sinh y}  }

 \displaystyle \:  \sf{ =  \frac{  \sin 2 x   -  i \sinh 2y}{  \cosh 2y  - \cos 2x }  }

 \displaystyle \:  \sf{ =  \frac{  \sin 2 x   }{  \cosh 2y  - \cos 2x } - i   \displaystyle \:  \sf{   \frac{   \sinh 2y}{  \cosh 2y  - \cos 2x }  }}

Real part

 \displaystyle \:  \sf{ =  \frac{  \sin 2 x   }{  \cosh 2y  - \cos 2x } }

Imaginary part

 \displaystyle \:  \sf{ =  -   \displaystyle \:  \sf{   \frac{   \sinh 2y}{  \cosh 2y  - \cos 2x }  }}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. show that sinix=isinhx

https://brainly.in/question/11810908

2. if a+ib/c+id is purely real complex number then prove that ad=bc

https://brainly.in/question/25744720

Similar questions