Math, asked by sonijuli16, 7 months ago

cot²30°-2sec²45°+3tan²60°-2/5cosec³30°​

Answers

Answered by MoodyCloud
4

To evaluate:-

 \bigstar \sf \: \dfrac{ {cot}^{3} \: 30 \degree - 2 \:  {sec}^{2}  \: 45 \degree  + 3 \:  {tan}^{2}  \: 60 \degree - 2}{5  \:  {cosec}^{3} \: 30 \degree}

Solution:-

 \bigstar \sf \: \dfrac{ {cot}^{3} \: 30 \degree - 2 \:  {sec}^{2}  \: 45 \degree  + 3 \:  {tan}^{2}  \: 60 \degree - 2}{5  \:  {cosec}^{3} \: 30 \degree}

cot 30° = 3

sec 45° = 2

tan 60° = 3

cosec 30° = 2

Put all values,

 \implies \sf  \dfrac{ { (\sqrt{3} )}^{3}  - 2 \times  {( \sqrt{2} )}^{2}  + 3 \times  { (\sqrt{3}) }^{2}  - 2}{5 \times  {(2)}^{3} }

 \implies \sf  \dfrac{3 \sqrt{3} - 4 + 9 \sqrt{3}   - 2 }{5 \times 8}

 \implies \sf  \dfrac{3 \sqrt{3}  + 9 \sqrt{3}  - 6}{40}

 \implies \sf  \dfrac{ \cancel{12} \times  \sqrt{6}  - 6}{ \cancel{40}}

 \implies \sf  \dfrac{3 \sqrt{6} - 6}{10}

Therefore,

  \sf \: \dfrac{ {cot}^{3} \: 30 \degree - 2 \:  {sec}^{2}  \: 45 \degree  + 3 \:  {tan}^{2}  \: 60 \degree - 2}{5  \:  {cosec}^{3} \: 30 \degree} = \dfrac{3 \sqrt{6} - 6 }{10}

Similar questions