Math, asked by Gomimbodago, 1 year ago

(cotA - 1) / (2 - sec^2A) = cotA / 1+tanA ; proof

Answers

Answered by Vaibhav19111
30

 \cot(a)(1 -  \tan(a) )  \div  (1 +  \tan(a))(1 -  \tan(a) ) =  \cot(a) (1 -  \tan(a) ) \div 1 - ( \sec( {a}^{2} )  - 1) =  \cot(a)  - 1 \div 2 -  \sec( {a}^{2} )
hope this helps you
Answered by Anonymous
132
Hey Friend,

cotA - 1 / 2 - sec^2A = cotA / 1 + tanA

LHS
= cotA - 1 / 2 - sec^2A
= (cosA/sinA - 1) / 1 + 1 - sec^2A
= [(cosA - sinA) / sinA] /  1 - tan^2A
= [(cosA - sinA) / sinA] / [1 - sin^2A / cos^2A]
= [(cosA - sinA) / sinA] / [(cos^2A - sin^2A) / cos^2A]
= (cosA - sinA) / sinA X cos^2A / (cosA + sinA) (cosA - sinA)
= cos^2A / sinA (cosA + sinA)

RHS
= cotA / 1 - tanA
= (cosA / sinA) / (1 - sinA/cosA)
= (cosA / sinA) / [(cosA - sinA) / cosA]
= cosA / sinA X cosA / (cosA - sinA)
= cos^2A / sinA (cosA + sinA)

LHS = RHS
Hence proved.

Hope it helps!

Anonymous: thanx for marking me brainliest!!!
Gomimbodago: : )
Róunak: Superb ans. :)
Anonymous: thank you...
Similar questions