cotA-1/2sec²A=cotA/1+tanA
Answers
Answered by
1
Step-by-step explanation:
LHS = (CotA -1) /( 2- Sec²A )
= ( CotA-1) / (1 + 1 - Sec²A)
= (1/tanA)-1 / ( 1 - tan²A) ●Since tan²A +1 = sec²A So, 1- Sec²A = - tan²A
= (1-tanA) / tanA (1+tanA)(1-tanA) ● by identity a² -b² = (a+b) ( a-b)
= 1/ tanA(1+tanA)
= CotA / (1+tanA) = RHS
[ Hence Proved]
Answered by
6
Answer:
LHS=cotA−12−sec2A
=1tanA−12−(1+tan2A)
=1−tanAtanA1−tan2A
=1−tanAtanA(1−tan2A)
=1−tanAtanA(1−tanA)(1+tanA)
=1tanA(1+tanA)
=cotA
1+tan A
=RHS
Step-by-step explanation:
MARK ME BRAINLIEST
Similar questions