cotA/1-tanA+tanA/1-cotA=1+secAcosecA prove
Answers
Answered by
9
LHS=cotA/1-tanA +tanA/1-cotA
cotA=1/tanA
1/tanA(1-tanA) +(tanA)^2/tanA-1
Adding the two fractions ,we get
1-(tanA)^3/tanA(1-tanA)
a^3-b^3=(a-b)(a^2+ab+b^2)
(1-tanA)(1+tanA+(tanA)^2)/tanA(1-tanA)
1-tanA get cancelled
1+(tanA)^2=(secA)^2
tanA+(secA)^2/tanA
splitting
secA×secA/tanA +1
secA =1/cosA,tanA=sinA/cosA,1/sinA=cosecA
substituting,we get
1+secAcosecA
cotA=1/tanA
1/tanA(1-tanA) +(tanA)^2/tanA-1
Adding the two fractions ,we get
1-(tanA)^3/tanA(1-tanA)
a^3-b^3=(a-b)(a^2+ab+b^2)
(1-tanA)(1+tanA+(tanA)^2)/tanA(1-tanA)
1-tanA get cancelled
1+(tanA)^2=(secA)^2
tanA+(secA)^2/tanA
splitting
secA×secA/tanA +1
secA =1/cosA,tanA=sinA/cosA,1/sinA=cosecA
substituting,we get
1+secAcosecA
sanchitasharma2:
can you plz explain second step
This the answer.
Substituting cotA=1/tanA in second term
CotA/1-tanA + (tanA)^2/tanA -1
Can also be written as
CotA/1-tanA - (tanA)^2/1-tanA
Same denominators
CotA - (tanA)^2/1-tanA
CotA =1/tanA
1-(tanA)^3/tanA(1-tanA)
Answered by
35
Answer:
LHS
RHS
Similar questions