Math, asked by sanchitasharma2, 1 year ago

cotA/1-tanA+tanA/1-cotA=1+secAcosecA prove

Answers

Answered by karthikgvb
9
LHS=cotA/1-tanA +tanA/1-cotA
cotA=1/tanA
1/tanA(1-tanA) +(tanA)^2/tanA-1
Adding the two fractions ,we get
1-(tanA)^3/tanA(1-tanA)
a^3-b^3=(a-b)(a^2+ab+b^2)
(1-tanA)(1+tanA+(tanA)^2)/tanA(1-tanA)
1-tanA get cancelled
1+(tanA)^2=(secA)^2
tanA+(secA)^2/tanA
splitting
secA×secA/tanA +1
secA =1/cosA,tanA=sinA/cosA,1/sinA=cosecA
substituting,we get
1+secAcosecA

sanchitasharma2: can you plz explain second step
karthikgvb:
This the answer.
karthikgvb: CotA/1-tanA + tanA/1-cotA
Substituting cotA=1/tanA in second term
CotA/1-tanA + (tanA)^2/tanA -1
Can also be written as
CotA/1-tanA - (tanA)^2/1-tanA
Same denominators
CotA - (tanA)^2/1-tanA
CotA =1/tanA
1-(tanA)^3/tanA(1-tanA)
sanchitasharma2: thanks
Answered by Anonymous
35

Answer:

LHS

:\implies  \sf   \dfrac{\tan(A)}{ 1 - \cos(A) }+ \dfrac{\cot(A)}{ 1 - \tan(A) } \\  \\

:\implies  \sf  \dfrac{ \dfrac{\sin(A)}{ \cos(A) }}{1 -  \dfrac{ \cos(A) }{ \sin(A) }} + \dfrac{ \dfrac{\cos(A)}{ \sin(A) }}{1 -  \dfrac{ \sin(A) }{ \cos(A) }} \\  \\

:\implies  \sf  \dfrac{ \dfrac{\sin(A)}{ \cos(A) }}{\dfrac{ \sin(A)   - \cos(A) }{ \sin(A) }} + \dfrac{ \dfrac{\cos(A)}{ \sin(A) }}{ \dfrac{ \cos(A)   - \sin(A) }{ \cos(A) }} \\  \\

:\implies  \sf   \dfrac{\sin(A)}{ \cos(A) } \times \dfrac{\sin(A)}{  \sin(A)  -   \cos(A) }  -  \dfrac{\cos(A)}{ \sin(A) } \times \dfrac{\cos(A)}{  \sin(A)  -   \cos(A) } \\  \\

:\implies  \sf   \dfrac{\sin^{2} (A)}{ \cos(A) \bigg( \sin(A)  -   \cos(A)   \bigg)}  -   \dfrac{\cos^{2} (A)}{ \sin(A) \bigg( \sin(A)  -   \cos(A)   \bigg)} \\  \\

:\implies  \sf   \dfrac{\sin^{3} (A) - \cos^{3} (A)}{ \sin(A)\cos(A) \bigg( \sin(A)  -   \cos(A)   \bigg)} \\  \\

:\implies  \sf   \dfrac{ \bigg(\sin (A) - \cos (A) \bigg)\bigg(\sin^{2}  (A)  + \cos^{2}   (A) + \sin(A)\cos(A)\bigg)}{ \sin(A)\cos(A) \bigg( \sin(A)  -   \cos(A)   \bigg)} \\  \\

:\implies  \sf   \dfrac{ 1 + \sin(A).\cos(A)}{ \sin(A)\cos(A) } \\  \\

:\implies  \sf   \dfrac{1}{  \sin(A) }     \times  \dfrac{1}{  \cos(A) } + \dfrac{\sin(A)\cos(A)}{  \sin(A)\cos(A) } \\  \\

:\implies  \sf   \cosec(A) \sec(A) + 1 \\  \\

:\implies \textsf{\textbf{ 1 +  cosec(A) sec(A) }}\\  \\

RHS

Similar questions