Math, asked by mkshaikh2000, 1 year ago

cotA+cosecA=3,then find sinA=?​

Answers

Answered by MaheswariS
3

\textbf{Given:}

cosecA+cotA=3 .......(1)

\text{We know that,}

\bf\;cosec^2A-cot^2A=1

\implies(cosecA-cotA)(cosecA+cotA)=1

\implies\;cosecA-cotA=\frac{1}{3} .......(2)

\text{Adding (1) and (2), we get}

2\;cosecA=3+\frac{1}{3}

2\;cosecA=\frac{10}{3}

\implies\;cosecA=\frac{5}{3}

\text{Taking reciproccals, we get}

\bf\;sin\;A=\frac{3}{5}

Find more:

If 6 tan A -5 = 0 find the value of( 3 Sin A - Cos A) / (5 Cos A + 9 sin A)

https://brainly.in/question/5331430

Answered by harendrachoubay
0

The value of \sin A  is equal to \sin A=\dfrac{3}{5}.

Step-by-step explanation:

Given,

\cot A+\csc A=3               .........(1)

To find, the value of \sin A = ?​

Using the trigonometric identity,

\csc^2 A-\cot^2 A=1

⇒  (\csc A+\cot A)(\csc A-\cot A)=1  

Using equation (1), we get

(3)(\csc A-\cot A)=1

\csc A-\cot A =\dfrac{1}{3}      .........(2)

Adding equations (1) and (2), we get

\cot A+\csc A+\csc A-\cot A=3+\dfrac{1}{3}

\csc A+\csc A=\dfrac{9+1}{3}

2\csc A=\dfrac{10}{3}

\csc A=\dfrac{5}{3}

\sin A=\dfrac{3}{5}

Thus, the value of \sin A  is equal to \sin A=\dfrac{3}{5}.

Similar questions