Math, asked by amiya520, 11 months ago

(cotA/cotA-cot3A)-(tanA/tan3A-tanA)=1​

Answers

Answered by MaheswariS
13

\textbf{To prove:}

\dfrac{cotA}{cotA-cot3A}-\dfrac{tanA}{tan3A-tanA}=1

\text{Consider,}

\dfrac{cotA}{cotA-cot3A}-\dfrac{tanA}{tan3A-tanA}

=\dfrac{\frac{1}{tanA}}{\frac{1}{tanA}-\frac{1}{tan3A}}-\dfrac{tanA}{tan3A-tanA}

=\dfrac{\frac{1}{tanA}}{\frac{tan3A-tanA}{tanA\;tan3A}}-\dfrac{tanA}{tan3A-tanA}

=\dfrac{\frac{tanA\;tan3A}{tanA}}{tan3A-tanA}-\dfrac{tanA}{tan3A-tanA}

=\dfrac{tan3A}{tan3A-tanA}-\dfrac{tanA}{tan3A-tanA}

=\dfrac{tan3A-tanA}{tan3A-tanA}

=1

\therefore\boxed{\bf\dfrac{cotA}{cotA-cot3A}-\dfrac{tanA}{tan3A-tanA}=1}

Find more:

Prove that (tanA + secA ÷ cosecA + cotA)(tanA - secA ÷ cosecA - cotA) = 2(tanA×cosecA - cotA×secA)

https://brainly.in/question/8676527

Answered by pramod500428
2

Answer:

please mark it to the brain list

Attachments:
Similar questions