Math, asked by seemamalik1978, 4 months ago

cotA/cotA-cot3A+ tanA/ tanA-tan3A
(a) 0
(b) 1
(c) - 1
(d) 2
PLEASE EXPLAIN.​

Attachments:

Answers

Answered by ankitkhatri508
0

Answer:

tan3A−tanA

tanA

=1

\text{Consider,}Consider,

\dfrac{cotA}{cotA-cot3A}-\dfrac{tanA}{tan3A-tanA}

cotA−cot3A

cotA

tan3A−tanA

tanA

=\dfrac{\frac{1}{tanA}}{\frac{1}{tanA}-\frac{1}{tan3A}}-\dfrac{tanA}{tan3A-tanA}=

tanA

1

tan3A

1

tanA

1

tan3A−tanA

tanA

=\dfrac{\frac{1}{tanA}}{\frac{tan3A-tanA}{tanA\;tan3A}}-\dfrac{tanA}{tan3A-tanA}=

tanAtan3A

tan3A−tanA

tanA

1

tan3A−tanA

tanA

=\dfrac{\frac{tanA\;tan3A}{tanA}}{tan3A-tanA}-\dfrac{tanA}{tan3A-tanA}=

tan3A−tanA

tanA

tanAtan3A

tan3A−tanA

tanA

=\dfrac{tan3A}{tan3A-tanA}-\dfrac{tanA}{tan3A-tanA}=

tan3A−tanA

tan3A

tan3A−tanA

tanA

=\dfrac{tan3A-tanA}{tan3A-tanA}=

tan3A−tanA

tan3A−tanA

=1=1

\therefore\boxed{\bf\dfrac{cotA}{cotA-cot3A}-\dfrac{tanA}{tan3A-tanA}=1}∴

cotA−cot3A

cotA

tan3A−tanA

tanA

=1

Similar questions