cottheta/1-tantheta+tantheta/1-cottheta=tantheta+cottheta+1
Answers
Answer:
\setlength{\unitlength}{1cm}
\thicklines
\begin{picture}(10,6)
\put(2,2.2){\line(1,0){6}}
\put(2,2.2){\circle{2}}
\put(6,2.2){\oval(4,2)[r]}
\end{picture}
L. H. S
= 1 + Tan0
Tan0 1 - 1
1 - tan0 tan0
= 1 + Tansq0
Tan0(1 - tan0) tan0 - 1
= - 1 + Tansq0
Tan0(tan0 - 1 ) tan0 - 1
= Tansq0 - 1
(tan0-1) Tan0(Tan0 - 1)
= Tancube - 1
Tan0(tan0 - 1)
= (tan0 - 1) (tansq0 + 1 +tan)
Tan0 (tan0 - 1)
= Tansq + Tan0 +1
Tan0
= Tansq + Tan0 + 1
Tan0 Tan0 Tan0
= Tan0 + 1 + cot0
= Tan0 + cot0 +1
Proved