Math, asked by meghasinha71, 1 year ago

cotx cos^x - tanx sin^x =2 cot2x


meghasinha71: Nehi 2 hain power
meghasinha71: Pic kaise attach karu

Answers

Answered by MaheswariS
7

\textbf{To prove:}

cotx\,cos^2x-tanx\,sin^2x=2\,cot2x

\textbf{Solution:}

\text{Consider,}

cotx\,cos^2x-tanx\,sin^2x

=(\dfrac{cosx}{sinx})cos^2x-(\dfrac{sinx}{cosx})sin^2x

=\dfrac{cos^3x}{sinx}-\dfrac{sin^3x}{cosx}

=\dfrac{cos^4x-sin^4x}{sinx\,cosx}

=\dfrac{(cos^2x)^2-(sin^2x)^2}{sinx\,cosx}

\text{Using the algebraic identitty}

\boxed{\bf\,a^2-b^2=(a+b)(a-b)}

=\dfrac{(cos^2x+sin^2x)(cos^2x-sin^2x)}{sinx\,cosx}

=\dfrac{(1)(cos^2x-sin^2x)}{sinx\,cosx}

=\dfrac{2(cos^2x-sin^2x)}{2\,sinx\,cosx}

\text{Using the following identity}

\bf\,cos2A=cos^2A-sin^2A

\bf\;sinA=2\:sinA\:cosA

=2\,\dfrac{cos2x}{sin2x}

=2\,cot2x

\therefore\bf\,cotx\,cos^2x-tanx\,sin^2x=2\,cot2x

Find more:

If cos theta +sec theta = root 3, prove that cos cube theta +sec cube theta = 0

https://brainly.in/question/3077758

Answered by pritishaw147
0

Answer:

I hope you satisfied with this answers

Attachments:
Similar questions