Math, asked by sravani7605, 2 months ago

criterion of equation x2-√7x-4=0 is answer 32,23,19??​

Answers

Answered by XxTechnoBoyxX
3

➡ USER ANSWER IS :-

➡ 32,23,19

______________________

GIVEN :-

x2-√7x-4=0

______________________

SOLUTION :-

 \large \red\leadsto \red{x \times 2 -  \sqrt{7x}  - 4 = 0}

 \large \red\leadsto \red{2x -  \sqrt{7x}  - 4 = 0}

\large \red\leadsto \red{ -  \sqrt{7x}  =  - 2x + 4}

\large \red\leadsto \red{ \sqrt{7x}  = 2x - 4}

\large \red\leadsto \red{7x = 4x {}^{2}  - 16x + 16}

\large \red\leadsto \red{23x - 4x {}^{2}  - 16 = 0}

 \large \red\leadsto \red{- 4x {}^{2}  + 23x - 16 = 0}

\large \red\leadsto \red{4x {}^{2} - 23x + 16 = 0}

\large \red\leadsto \red{x =  \frac{ - ( - 23)  \frac{ + }{} \sqrt{( - 23) {}^{2}  - 4 \times 4 \times 16}  }{2 \times 4} }

\large \red\leadsto \red{x = \frac{23 \frac{ + }{} \sqrt{529 - 256}  }{8}  }

\large \red\leadsto \red{x = \frac{23 \frac{ + }{} \sqrt{273}  }{8}    }

CHECKING THE SOLUTION :-

\large \red\leadsto \red{x =  \frac{23 +  \sqrt{273} }{8} }

\large \red\leadsto \red{ \frac{23 -  \sqrt{273} }{8}}

______________________

SIMPLIFY :-

1) \tiny \red\leadsto \red{ \frac{23 +  \sqrt{273} }{8}  \times 2 -  \sqrt{7 \times  \frac{23 +  \sqrt{273} }{8} -  4 = 0} }

2)\tiny \red\leadsto \red{ \frac{23 -  \sqrt{273} }{8} \times 2 -  \sqrt{7 \times  \frac{23 -  \sqrt{273} }{8} - 4 = 0 } }

______________________

WHICH IS SOLUTION AND WHICH IS NOT :-

1)\red\leadsto  \blue{0 = 0}

2)\red\leadsto  \blue{ - 4.76136 = 0}

______________________

SO THE SOLUTION IS :-

\huge \red\leadsto \red{x =  \frac{23 +  \sqrt{273}  }{8}}

______________________

ALTERNATE FORM :-

\huge \red\leadsto  \bold\red{x = 4.94034}

______________________

SO YOUR ANSWER 32,23,19 is wrong :)

______________________

# Be Brainly :)

Similar questions