Math, asked by ayshaziya, 3 months ago

CSA of a cone is 154 cm square and its slant height is 14 cm. Find its radius and TSA of cone​

Answers

Answered by sethrollins13
46

Given :

  • Curved Surface Area of Cone is 154 cm .
  • Slant Height of Cone is 14 cm .

To Find :

  • Radius and Total Surface Area of Cone .

Solution :

For Radius :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cone=\pi{rl}}

Putting Values :

\longmapsto\tt{154=\dfrac{22}{{\cancel{7}}}\times{r}\times{{\cancel{14}}}}

\longmapsto\tt{154=22\times{r}\times{2}}

\longmapsto\tt{154=44\:r}

\longmapsto\tt{\cancel\dfrac{154}{44}=r}

\longmapsto\tt\bf{3.5=r}

So , The Radius of Cone is 3.5 cm .

Now ,

For Total Surface Area :

Using Formula :

\longmapsto\tt\boxed{T.S.A\:of\:Cone=\pi{r(l+r)}}

Putting Values :

\longmapsto\tt{\dfrac{22}{{\cancel{7}}}\times\dfrac{{\cancel{35}}}{10}\times{(14+3.5)}}

\longmapsto\tt{\dfrac{11{\not{0}}}{1{\not{0}}}\times{17.5}}

\longmapsto\tt{11\times{17.5}}

\longmapsto\tt\bf{192.5\:{cm}^{2}}

So , The Total Surface Area of Cone is 192.5 cm² .


Anonymous: Nice
sethrollins13: Thank you ! :D
iTzShInNy: Superb :) !!!
Answered by iTzShInNy
22

 \underline{ \sf \:Given:-} \\

 \\

  •  \small \sf  Curved \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small  \boxed{ \bf \purple{ 154  \: cm}} \\
  •  \small \sf \: Slant \: Height \: of the \: Cone, (l) \large \leadsto   \small  \boxed{ \bf \purple{ 14  \: cm}} \\

 \\

━━━ ✽ • ✽ ━━━

 \\

 \underline{ \sf \: To \: Find:- }

 \\

  •  \small \sf \: radius \: (r) \large \leadsto \small  \: ? \\
  •  \small \sf \: Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small { \bf { ? }} \\

 \\

ㅤㅤㅤㅤㅤㅤ━━━ ✽ • ✽ ━━━

 \\

 \underline{ \sf \: SoluTion:- }

 \\

 \small \sf \::  \longrightarrow Curved \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf \pi rl \\

 \small \sf \::  \longrightarrow 154 \large \leadsto   \small \bf  \frac{22} {\cancel{7} }  \times r \times  \cancel{14}\\

 \small \sf \::  \longrightarrow 154 \large \leadsto   \small \bf 44 \: r\\

 \small \sf \::  \longrightarrow  \frac{154}{44}  \large \leadsto   \small \bf r\\

 \small \sf \::  \longrightarrow r \large \leadsto   \small \bf  \frac {\cancel{{154}}}{ \cancel{44}} \\

 \small \sf \::  \longrightarrow r \large \leadsto   \small \bf  \frac{7}{2} \\

 \small \sf \therefore \: Hence \: we \: got \: the \: radius (r)  \: as \:   \frac{7}{2}  \\

ㅤㅤㅤㅤㅤㅤ━━━ ✽ • ✽ ━━━

 \\  \\

 \small \sf \::  \longrightarrow Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf \pi r(l + r) \\

 \small \sf \::  \longrightarrow Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf  \frac{22}{7}  \times  \frac{7}{2}(14 +  \frac{7}{2}  )\\

 \small \sf \::  \longrightarrow Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf  \frac {\cancel{22}}{ \cancel7}  \times  \frac{ \cancel7}{ \cancel2}  \times  \frac{28 + 7}{2} \\

 \small \sf \::  \longrightarrow Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf 11 \times  \frac{28 + 7}{2}  \\

 \small \sf \::  \longrightarrow Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf 11 \times  \frac{35}{2}  \\

 \small \sf \::  \longrightarrow Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf  \frac{11 \times 35}{2}  \\

 \small \sf \::  \longrightarrow Total \: Surface \: Area \: of \: the \: Cone \large \leadsto   \small \bf 192.5 \: cm {}^{2}  \\

 \\

ㅤㅤㅤㅤㅤㅤ━━━ ✽ • ✽ ━━━

 \\

 \underline{ \sf \: More \: Information:-}

 \\

  • \small \sf \: Curved \: Surface \: Area \: of \: a \: Cone \large\leadsto  \small \boxed{ \bf \pi rl} \\

  \\

  • \small \sf \: Total  \: Surface \:  Area  \: of \: a \: Cone \large\leadsto  \small \boxed{ \bf \pi r(r + l)} \\

 \\

  • \small \sf \: \: Surface \:  Area  \: of \: a \: Sphere \large\leadsto  \small \boxed{ \bf4 \pi r {}^{2} } \\

 \\

  • \small \sf \: Total  \: Surface \:  Area  \: of \: a \: Hemisphere \large\leadsto  \small \boxed{ \bf 3\pi r {}^{2} } \\

 \\

  • \small \sf \: Curved \: Surface \:  Area  \: of \: a \:  Hemisphere\large\leadsto  \small \boxed{ \bf2 \pi r {}^{2} } \\

 \\

  •  \small \sf \: Volume  \: of \: a \: Cuboid  \large\leadsto  \small \boxed{ \bf l \times b \times h}

 \\

  •  \small \sf \: Volume  \: of \: a \: Cube \large\leadsto  \small \boxed{ \bf  {a}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Cylinder  \large\leadsto  \small \boxed{ \bf \pi  {r}^{2}h }

 \\

  •  \small \sf \: Volume  \: of \: a \:Cone\large\leadsto  \small \boxed{ \bf  \frac{1}{3}\pi r {}^{2} h }

 \\

  •  \small \sf \: Volume  \: of \: a \: Sphere \large\leadsto  \small \boxed{ \bf  \frac{4}{3} \pi r {}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Hemisphere \large\leadsto  \small \boxed{ \bf  \frac{2}{3}\pi  {r}^{3}  }

 \\

ㅤㅤㅤㅤㅤㅤ━━━ ✽ • ✽ ━━━

 \\

Similar questions