Math, asked by Biology76, 4 months ago

CSC theta -cot theta =1/3 ,then csc theta +cot theta ?

Answers

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{cosec\theta \: - cot\theta \: = \dfrac{1}{3} } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\:find - \begin{cases} &\sf{cosec\theta \: + cot\theta \:}  \end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cosec\theta \: - cot\theta \: = \dfrac{1}{3}  -  -  - (1)

We know that,

\rm :\longmapsto\: {cosec}^{2} \theta \: -  {cot}^{2} \theta \: = 1

\rm :\longmapsto\:(cosec\theta \: - cot\theta \:)(cosec\theta \: + cot\theta \:) = 1

\rm :\longmapsto\:\dfrac{1}{3}  \times (cosec\theta \: + cot\theta \:) = 1 \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \: using \: (1) \}

\rm :\longmapsto\:cosec\theta \: + cot\theta \: = 3

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions