cube of a positive integer of the form of 6q+r,q is an integer and r=o,1,2,3,4,5 is also of the form of 6m+r
Answers
Answered by
9
let a be any +ve integer
b=6
by euclid 's division lemma,
a=bq+r, 0=< r < b
a= 6q+r,0=< r
when
r=0,
a = 6q
⇒ a³ = (6q)³ = 216q³= 6(36q³) = 6m(where m is = 36q³)
when
r=1,
a=6q+1
(a)³=(6q+1)³ = (6q)³+(1)³ + 3(6q)(1)(6q+1)
216q³+1 + 18q(6q+1)
216q³+1 + 108q²+18q
216q³+ 108q²+18q+1
6(36q³+18q²+3q)+1
⇒6m+1 {where m= (36q³+18q²+3q)}
when
r=2,
a=6q+2
(a)³=(6q+2)³=(6q)³+(2)³ + 3(6q)(2)(6q+2)
= 216q³+ 8+ 36q(6q+2)
=216q³+ 8+ 216q² +72q
=216q³+ 216q² +72q+8
=6(36q³+ 36q² +12q)+8
⇒6m+8 [where m = (36q³+ 36q² +12q)]
when
r=3,
a=6q+3
(a)³=(6q+3)³=(6q)³+(3)³ + 3(6q)(3)(6q+3)
= 216q³+27 + 54q(6q+3)
=216q³+27 + 324q²+ 162q
=216q³ + 324q²+ 162q+27
=6(36q³+54q²+27q)+27
⇒6m+27 [where m= (36q³+54q²+27q)]
when
r=4,
a=6q+4
(a)³=(6q+4)³=(6q)³+(4)³ + 3(6q)(4)(6q+4)
= 216q³+64+72q(6q+4)
= 216q³+64+432q²+ 288q
= 216q³+432q²+ 288q+64
=6 (36q³+72q²+28q)+64
⇒6m+64 [where m=(36q³+72q²+28q)]
when
r=5,
a=6q+5
(a)³=(6q+5)³=(6q)³+(5)³ + 3(6q)(5)(6q+5)
=216q³+125+90q(6q+5)
=216q³+125+5400q²+450q
=216q³+5400q²+450q+125
=6(36q³+900q²+75q)+125
⇒6m+125 [ where m =(36q³+900q²+75q)]
hence
r=o,1,2,3,4,5 is also of the form of 6m+r
b=6
by euclid 's division lemma,
a=bq+r, 0=< r < b
a= 6q+r,0=< r
when
r=0,
a = 6q
⇒ a³ = (6q)³ = 216q³= 6(36q³) = 6m(where m is = 36q³)
when
r=1,
a=6q+1
(a)³=(6q+1)³ = (6q)³+(1)³ + 3(6q)(1)(6q+1)
216q³+1 + 18q(6q+1)
216q³+1 + 108q²+18q
216q³+ 108q²+18q+1
6(36q³+18q²+3q)+1
⇒6m+1 {where m= (36q³+18q²+3q)}
when
r=2,
a=6q+2
(a)³=(6q+2)³=(6q)³+(2)³ + 3(6q)(2)(6q+2)
= 216q³+ 8+ 36q(6q+2)
=216q³+ 8+ 216q² +72q
=216q³+ 216q² +72q+8
=6(36q³+ 36q² +12q)+8
⇒6m+8 [where m = (36q³+ 36q² +12q)]
when
r=3,
a=6q+3
(a)³=(6q+3)³=(6q)³+(3)³ + 3(6q)(3)(6q+3)
= 216q³+27 + 54q(6q+3)
=216q³+27 + 324q²+ 162q
=216q³ + 324q²+ 162q+27
=6(36q³+54q²+27q)+27
⇒6m+27 [where m= (36q³+54q²+27q)]
when
r=4,
a=6q+4
(a)³=(6q+4)³=(6q)³+(4)³ + 3(6q)(4)(6q+4)
= 216q³+64+72q(6q+4)
= 216q³+64+432q²+ 288q
= 216q³+432q²+ 288q+64
=6 (36q³+72q²+28q)+64
⇒6m+64 [where m=(36q³+72q²+28q)]
when
r=5,
a=6q+5
(a)³=(6q+5)³=(6q)³+(5)³ + 3(6q)(5)(6q+5)
=216q³+125+90q(6q+5)
=216q³+125+5400q²+450q
=216q³+5400q²+450q+125
=6(36q³+900q²+75q)+125
⇒6m+125 [ where m =(36q³+900q²+75q)]
hence
r=o,1,2,3,4,5 is also of the form of 6m+r
Similar questions