Math, asked by manpreet3297, 1 year ago

cube root x square + 2 equal to 3​

Answers

Answered by AbhijithPrakash
4

Answer:

\sqrt[3]{x^2}+2=3\quad :\quad x=1,\:x=-1

Step-by-step explanation:

\sqrt[3]{x^2}+2=3

\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}

\sqrt[3]{x^2}+2-2=3-2

\mathrm{Simplify}

\sqrt[3]{x^2}=1

\mathrm{Take\:both\:sides\:of\:the\:equation\:to\:the\:power\:of\:}3

\left(\sqrt[3]{x^2}\right)^3=1^3

\mathrm{Expand\:}\left(\sqrt[3]{x^2}\right)^3

\left(\sqrt[3]{x^2}\right)^3

\sqrt[n]{a}=a^{\frac{1}{n}}

=\left(x^2^{\frac{1}{3}}\right)^3

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

=x^2^{\frac{1}{3}\cdot \:3}

=x^2

\mathrm{Expand\:}1^3:\quad 1

x^2=1

\mathrm{Solve\:}\:x^2=1

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{1},\:x=-\sqrt{1}

x=1,\:x=-1

\mathrm{Verify\:Solutions}

\mathrm{Check\:the\:solutions\:by\:plugging\:them\:into\:}\sqrt[3]{x^2}+2=3 \mathrm{Remove\:the\:ones\:that\:don't\:agree\:with\:the\:equation.}

\mathrm{Plug}\:x=1:\quad \mathrm{True}

\mathrm{Plug}\:x=-1:\quad \mathrm{True}

\mathrm{The\:solution\:is}

x=1,\:x=-1

Attachments:
Similar questions