Math, asked by madmanmaharana80, 5 months ago

curved surface area of a cone is 308 cm^2 and its slant height is 14 cm. Find the base area and its volume​

Answers

Answered by MoodyCloud
60
  • Base area of cone is 154 cm².
  • Volume of cone is 622.16

Step-by-step explanation:

Given:-

  • Curved surface area of cone is 308 cm².
  • Slant height of cone is 14 cm.

To find:-

  • Base area of cone.
  • Volume of cone.

Solution:-

Here,

• First we will find base radius of cone by using curved surface area of cone for finding base area.

• Then we will find height of cone using base radius and Slant height of cone for volume of cone.

Curved surface area of cone = πrl

Where,

r is radius and l is slant height of cone.

Put Curved surface area and l in formula :

 \longrightarrow 308 = 22/7 × r × 14

 \longrightarrow 308 = 308/7 × r

 \longrightarrow 308 = 44 × r

 \longrightarrow r = 308/44

 \longrightarrow r = 7

Base radius of cone is 7 cm.

Base area = π [r is base radius]

Put r in formula :

 \longrightarrow 22/7 × (7)²

 \longrightarrow 22/7 × 49

 \longrightarrow 1078/7

 \longrightarrow 154

Base area of cone is 154 cm².

l = √r² + h²

[Where, l is slant height, r is radius and h is height of cone]

By this,

h = √l² - r²

 \sf \rightarrow h = \sqrt{(14)^{2} - (7)^{2}}

 \sf \rightarrow h = \sqrt{196 - 49}

 \sf \rightarrow h = \sqrt{147}

 \sf \rightarrow \bold{h = 12.12}

Height of cone is 12.12 cm.

Volume of cone = 1/3 πr²h

Put h and r in formula:

 \longrightarrow 1/3 × 22/7 × (7)² × 12.12

 \longrightarrow 22/21 × 49 × 12.12

 \longrightarrow 13065.36/21

 \longrightarrow 622.16

Volume of cone is 622.16 cm³.

Answered by itzcutiemisty
52

Answer:

Base area = 154 cm²

Volume = 622.16 cm³

Step-by-step explanation:

\underline{\bigstar\:\textsf{Given:}}

  • CSA of cone = 308 cm²
  • Slant height (l) = 14 cm

\underline{\bigstar\:\textsf{To\:find:}}

  • Base area = ?
  • Volume = ?

\underline{\bigstar\:\textsf{Solution:}}

We know, \sf{\underline{curved\:surface\:area\:of\:cone\:=\:\pi\:rl}}

Let's find radius first !

\longrightarrow\:\sf{308\:=\:\dfrac{22}{7}\:\times\:r\:\times\:14}

\longrightarrow 308 = 22 × 2 × r

\longrightarrow\:\sf{\dfrac{308}{22\:\times\:2}}

\therefore Radius = 7 cm.

Now, the base of a cone is a circle, so the base area = \sf{\pi}

\longrightarrow\:\sf{Base\:area\:=\:\dfrac{22}{7}\:\times\:(7)^2}

\longrightarrow\:\sf{Base\:area\:=\:\dfrac{22}{7}\:\times\:49}

\longrightarrow Base area = 22 × 7

\therefore Base area of cone if 154 cm²

Now, we know that volume of cone = \sf{\dfrac{1}{3}\pi\:r^2h}

Here, we don't know the height but we know that \sf{l^2\:=\:r^2+h^2}

So, h = \:\sf{\sqrt{l^2-r^2}}

\longrightarrow\:\sf{h\:=\:\sqrt{(14)^2-(7)^2}}

\longrightarrow\:\sf{h\:=\:\sqrt{196\:-\:49}}

\longrightarrow\:\sf{h\:=\:\sqrt{147}}

\therefore Height of cone = 12.12 cm.

Now, we will find the volume.

\longrightarrow\:\sf{V\:=\:\dfrac{1}{3}\:\times\:\dfrac{22}{7}\:\times\:(7)^2\:\times\:12.12}

\longrightarrow\:\sf{V\:=\:\dfrac{22}{21}\:\times\:49\:\times\:12.12}

\longrightarrow Volume of cone is 622.16 cm³.

Similar questions