Math, asked by salekarsejal722, 3 days ago

Cx. (7) Write principal solutions of tan5 theta= -1

Answers

Answered by kulddepraj755
8

Answer:

Ans:27°

Step-by-step explanation:

tan5theta= -1

tan5theta =tan(-45°)

tan5theta= tan(180°-45°)

tan5theta=tan135°

On comparing both side

5theta=135

theta=135/5

theta=27°

Answered by pulakmath007
11

The principal solutions are

\displaystyle \sf{ \bigg \{ \:  \frac{3\pi}{20} ,\frac{7\pi}{20},\frac{11\pi}{20},\frac{15\pi}{20},\frac{19\pi}{20} , \frac{23\pi}{20} ,\frac{27\pi}{20},\frac{31\pi}{20},\frac{35\pi}{20},\frac{39\pi}{20} \:  \bigg \}  }

Given : tan 5θ = - 1

To find : The principal solutions

Solution :

Step 1 of 3 :

Write down the given equation

The given equation is

tan 5θ = - 1

Step 2 of 3 :

Find the general solution set

\displaystyle \sf{  tan \: 5 \theta =  - 1}

\displaystyle \sf{ \implies tan \: 5 \theta =  - tan \:  \frac{\pi}{4} }

\displaystyle \sf{ \implies tan \: 5 \theta =   tan \: ( \pi - \frac{\pi}{4} )}

\displaystyle \sf{ \implies tan \: 5 \theta =   tan \: \frac{3\pi}{4} }

\displaystyle \sf{ \implies  \: 5 \theta =   k\pi +  \frac{3\pi}{4} }

\displaystyle \sf{ \implies  \:  \theta =    \frac{k\pi}{5}  +  \frac{3\pi}{20} }

Where k is a whole number

Step 3 of 3 :

Find principal solutions

\displaystyle \sf{  \theta =    \frac{k\pi}{5}  +  \frac{3\pi}{20} }

Putting k = 0 , 1 , 2 , . . . . , 9

The required principal solutions are

\displaystyle \sf{ \bigg \{ \:  \frac{3\pi}{20} ,\frac{7\pi}{20},\frac{11\pi}{20},\frac{15\pi}{20},\frac{19\pi}{20} , \frac{23\pi}{20} ,\frac{27\pi}{20},\frac{31\pi}{20},\frac{35\pi}{20},\frac{39\pi}{20} \:  \bigg \}  }

Similar questions