Math, asked by 8979643035ritu95, 23 hours ago

cylinder and a cone have same base and same height. The ratio their volume is:-​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

  • A cylinder and a cone have same base and same height.

Let assume that

  • Radius of base of cone and cylinder = r units

  • Height of cone and cylinder = h units

Now,

We know,

\rm \: Volume_{(Cylinder)} = \pi \:  {r}^{2} \: h \\

and

\rm \: Volume_{(Cone)} =\dfrac{1}{3}   \: \pi \:  {r}^{2} \: h \\

So,

\rm \: Volume_{(Cylinder)} : Volume_{(Cone)} \\

\rm \:  =  \: \pi \:  {r}^{2} \: h \:  :  \:  \dfrac{1}{3} \: \pi \:  {r}^{2} \: h \: \\

\rm \:  =  \: 1 \:  :  \:  \dfrac{1}{3} \:  \: \\

\rm \:  =  \: 3 \:  :  \:  1 \:  \: \\

Hence,

\rm\implies \:\boxed{ \rm{ \:Volume_{(Cylinder)} : Volume_{(Cone)} = 3 : 1 \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions