Math, asked by mersalnambish, 10 months ago

(D^2-6D+13)y=8e^{3x}sin2x find CF and PI​

Answers

Answered by mithun890
3

The given equation is,

d^2y/dx^2 - 6 dy/dx +13y = 8 e^3x Sin 2x —(1)

Let,

y= e^mx be a trial solution of equation d^2y/dx^2 - 6 dy/dx +13y = 0 — (2)

  • Now;

          dy/dx = me^mx

           and

          d^2y/dx^2 = m^2 e^mx

  • Now lets Put these values in equation (2),

we get;

          m^2 e^mx - 6me^mx + 13 e^mx = 0

            e^mx ( m^2 - 6m +13) = 0

              e^mx ≠ 0 so, m^2 - 6m +13 =0

by solving this with the equation of sridhara charya we get,

m = [- (-6)±Sqrt{(-6)^2 - 4×1×13}]/ 2×1

m = {6±Sqrt(-16)}/2

m = {6±Sqrt(-16)}/2

m = 3±2i , where i = sqrt(-1)

  • Now;

          the Complementary function of the given equation (1) is ;

                C. F. = e^3x( A Cos 2x + B Sin 2x)

  • Now;

we found the value of a particular integral with help of D -the operator's method ;

                  P. I. = 8 e^3x Sin 2x / (D^2 - 6D+13)

                        = 8 e^3x [Sin 2x / {(D+3)^2 - 6(D+3) +13}]

                        = 8 e^3x [ Sin 2x / (D^2 + 4)]

                         = 8 x e^3x {Sin 2x / 2D}

                       = 4 x e^3x (Sin 2x /D)

                      = 4 x e^3x (- Cos 2x/2)

                     = - 2 x e^3x Cos 2x

  • Therefore; the required general solution of given equation(1) is,

                  y = C. F. + P. I.

                y = e^3x (A Cos 2x + B Sin 2x) - 2 x e^3x Cos 2x

( where A&B are the arbitrary constants)

#SPJ3

Similar questions