Math, asked by saurav11292, 1 year ago

d^2y/dx^2-3dy/dx+2y=e^x/1+e^x​

Answers

Answered by Swarup1998
31
\underline{\textsf{Solution :}}

\mathsf{Given,\:\frac{d^{2}y}{dx^{2}}-3\frac{dy}{dx}+2y=\frac{e^{x}}{1+e^{x}}}

\boxed{\textsf{Finding C.F.}}

\textsf{Let, the auxiliary equation be}

\mathsf{m^{2}-3m+2=0}

\to \mathsf{(m-2)(m-1)=0}

\therefore \mathsf{m =2,1}

\mathsf{So,\:C.F.=C_{1}e^{2x}+C_{2}e^{x}}

\mathsf{=C_{1}y_{1}+C_{2}y_{2}\:(say)\:,}

\mathsf{where\:y_{1}=e^{2x}\:,\:y_{2}=e^{x}}

\boxed{\textsf{Finding P.I.}}

\mathsf{Now,\:W(y_{1},y_{2})}

\mathsf{=\left | \begin{array}{cc}y_{1} & y_{2} \\ y'_{1} & y'_{2} \end{array}\right |}

\mathsf{=\left | \begin{array}{cc}e^{2x} & e^{x} \\ 2\:e^{2x} & e^{x} \end{array}\right |}

\mathsf{=e^{3x}-2\:e^{3x}}

\mathsf{=-e^{3x}\neq 0}

\mathsf{So,\: y_{1}\:,\:y_{2}\:are\:L.I.}

\mathsf{Let,\:y_{p}=v_{1}(x)y_{1}+v_{2}(x)y_{2}}

\mathsf{Then,\:v_{1}=\int \frac{-y_{2}R(x)}{W(y_{1},y_{2})}dx}

\mathsf{=\int \dfrac{-e^{x}\frac{e^{x}}{1+e^{x}}}{-e^{3x}}dx}

\mathsf{=\int \frac{dx}{e^{x}(1+e^{x})}}

\mathsf{=\int [\frac{1}{e^{x}}-\frac{1}{1+e^{x}}]dx}

\mathsf{=\int \frac{dx}{e^{x}}-\int \frac{dx}{1+e^{x}}\:\:...(i)}

\mathsf{Let,\:1+e^{x}=u}

\to \mathsf{e^{x}dx=du}

\to \mathsf{dx=\frac{du}{u-1}}

\mathsf{So,\:\int \frac{dx}{1+e^{x}}}

\mathsf{=\int \frac{du}{u(u-1)}}

\mathsf{=\int [\frac{1}{u-1}-\frac{1}{u}]du}

\mathsf{=\int \frac{du}{u-1}-\int \frac{du}{u}}

\mathsf{=log(u-1)-logu}

\mathsf{=log(e^{x})-log(1+e^{x})}

\mathsf{=x-log(1+e^{x})}

\textsf{Continuing (i), we get}

\to \mathsf{\int e^{-x}dx-\{x-log(1+e^{x})\}}

\mathsf{=-e^{-x}-x+log(1+e^{x})}

\to \mathsf{v_{1}=-e^{-x}-x+log(1+e^{x})}

\mathsf{Again,\:v_{2}=\int \frac{y_{1}R(x)}{W(y_{1},y_{2})}dx}

\mathsf{=\int \dfrac{e^{2x}\frac{e^{x}}{1+e^{x}}}{-e^{3x}}dx}

\mathsf{=-\int \frac{dx}{1+e^{x}}}

\mathsf{=-\{x-log(1+e^{x})\}}

\mathsf{=-x+log(1+e^{x})}

\to \mathsf{v_{2}=-x+log(1+e^{x})}

\mathsf{Hence,\:y_{p}=v_{1}y_{1}+v_{2}y_{2}}

\mathsf{=e^{2x}[-e^{-x}-x+log(1+e^{x})]}

\mathsf{+e^{x}[-x+log(1+e^{x})]}

\mathsf{=-e^{x}-x\:e^{2x}+e^{2x}log(1+e^{x})}

\mathsf{-x\:e^{x}+e^{x}log(1+e^{x})}

\mathsf{=(e^{2x}+e^{x})log(1+e^{x})}

\mathsf{-(x+1)e^{x}-x\:e^{2x}}

\textsf{Therefore, the complete solution be}

\mathsf{y=C.F.+y_{p}}

\mathsf{=C_{1}e^{2x}+C_{2}e^{x}}

\mathsf{+(e^{2x}+e^{x})log(1+e^{x})}

\mathsf{-(x+1)e^{x}-x\:e^{2x}}

Anonymous: Well elaborated and superb too !
Swarup1998: Thank you! ☺
Anonymous: Pleasure all mine !
Noah11: How Genius, The way you explain is totally Amazing :)
Swarup1998: :-)
Similar questions