Math, asked by erolesly2018, 1 year ago

d^2y/dx^2 of 1-xy=x-y express in terms of x and y

Answers

Answered by hukam0685
0

Answer:

\frac{ {d}^{2} y}{d {x}^{2} } =  \frac{2(1 + y)}{ {(x - 1)}^{2} } \\  \\

Step-by-step explanation:

To find

 \frac{ {d}^{2} y}{d {x}^{2} }  \\  \\ of \\  \\ 1 - xy = x - y \\  \\

Differentiate it once first,with respect to x

 \frac{d(1 - xy)}{dx}  = \frac{d(x - y)}{dx}   \\  \\   \because \:  \frac{d(uv)}{dx}  = u \frac{dv}{dx}  - v \frac{du}{dx}  \\  \\ 0 - x \frac{dy}{dx}  - y \frac{dx}{dx}  =  \frac{dx}{dx}  -  \frac{dy}{dx}  \\   \\ - x \frac{dy}{dx}  - y.1  =  1  -  \frac{dy}{dx}  \\   \\  \frac{dy}{dx}(1 - x) = 1 + y \\  \\  \frac{dy}{dx}  =  \frac{1 + y}{1 - x} ....eq1 \\  \\again \: do \: differentiation \\  \\  - x \frac{ {d}^{2} y}{d {x}^{2} }  -  \frac{dy}{dx}  -  \frac{dy}{dx}  =  - \frac{ {d}^{2} y}{d {x}^{2} } \\  \\ ( x  - 1)\frac{ {d}^{2} y}{d {x}^{2} }   +  2\frac{dy}{dx}   = 0 \\  \\ \\ ( x  - 1)\frac{ {d}^{2} y}{d {x}^{2} } =  - 2 \frac{dy}{dx}  \\  \\ put \: value \: of \:  \frac{dy}{dx}  \: from \: eq1 \\  \\ ( x  - 1)\frac{ {d}^{2} y}{d {x}^{2} } =  - 2 (\frac{1 + y}{1 - x}) \:   \\  \\( x  - 1)\frac{ {d}^{2} y}{d {x}^{2} } =  2 (\frac{1 + y}{x - 1}) \\  \\ \frac{ {d}^{2} y}{d {x}^{2} } =  \frac{2(1 + y)}{ {(x - 1)}^{2} }  \\  \\

Hope it helps you.

Similar questions