Math, asked by kusumamnnagraj, 2 months ago

(D^4+64) y=0 find the differential equation

Answers

Answered by KPCG
1

hope this is helpful

thank you

Attachments:
Answered by pulakmath007
6

SOLUTION

TO SOLVE

The differential equation

 \sf{ ({D}^{4} + 64)y = 0 }

EVALUATION

Here the given differential equation is

 \sf{ ({D}^{4} + 64)y = 0 }

Let  \sf{y =  {e}^{mx} } be the trial solution

Then the auxiliary equation is

 \sf{ {m}^{4} + 64 = 0 }

 \sf{ \implies \:  {( {m}^{2} )}^{2} +  {(8)}^{2}  = 0 }

 \sf{ \implies \:  {( {m}^{2}  + 8)}^{2}  - 2. {m}^{2}  .8 = 0 }

 \sf{ \implies \:  {( {m}^{2}  + 8)}^{2}  - 16 {m}^{2}  = 0 }

 \sf{ \implies \:  {( {m}^{2}  + 8)}^{2}  -  {(4m)}^{2}  = 0 }

 \sf{ \implies \:  ( {m}^{2}  + 8 + 4m) ( {m}^{2}  + 8  -  4m)  = 0 }

 \sf{ \implies \:  ( {m}^{2}  + 4m + 8) ( {m}^{2}  -  4m + 8)  = 0 }

Now  \sf{   ( {m}^{2}  + 4m + 8)  = 0  \:  \: \:  \:  gives}

 \displaystyle \sf{ \implies \:  m =  \frac{ - 4   \: \pm \: \sqrt{16 - 4.8}  }{2.1} }

 \displaystyle \sf{ \implies \:  m =  \frac{ - 4   \: \pm \: \sqrt{16 - 32}  }{2} }

 \displaystyle \sf{ \implies \:  m =  \frac{ - 4   \: \pm \: \sqrt{ - 16 }  }{2} }

 \displaystyle \sf{ \implies \:  m =  \frac{ - 4   \: \pm \: 4i  }{2} }

 \displaystyle \sf{ \implies \:  m =  - 2   \: \pm \: 2i   }

Similarly  \sf{   ( {m}^{2}   -  4m + 8)  = 0  \:  \: \:  \:  gives}

 \sf{   m = 2 \:  \pm \: 2i}

Thus four roots of the auxiliary equation are

- 2 + 2i , - 2 - 2i , 2 + 2i , 2 - 2i

Hence the required solution is

 \sf{y =  {e}^{ - 2t} (a \cos 2t + b \sin 2t) +  {e}^{  2t} (c \cos 2t + d \sin 2t)}

Where a , b , c , d are constants

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable separable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Similar questions