Math, asked by HanikaYash, 11 months ago

D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that
AE²+ BD²= AB²+DE².

Answers

Answered by Anonymous
39

 \huge \boxed{\bf{\red{Solution:-}}}

 \bf \green{Given:-} \:  \sf \: D \: and \: E \: are \: points \: on \: the  \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \: \sf sides \: CA \: and \: CB \: respectively \: of \: a \: triangle \: ABC  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf right \: angled \: at \: C.

 \bf \green{To \: Prove:-} \:  \sf \: AE {}^{2}  + BD {}^{2}  = AB {}^{2}  + DE {}^{2} .

 \bf \green{Proof:-} \:  \sf \: In \: right \: triangle \: ACB,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: AB {}^{2}  = \:  AC {}^{2}  + BC {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1)

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf\big|  \:  \:  \:  \: By \: Pythagoras \: Theorem

 \sf \: In \: right \: triangle \: DCE,

 \:  \:  \:  \:  \:  \:  \sf \: DE {}^{2}  =  \: CD {}^{2}  + CE {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:... (2)

 \sf \:  \:    \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \big|  \:  \: By \: Pythagoras \: Theorem

 \sf \: Adding \: (1) \: and \: (2) ,\: We \: get

 \sf \: RHS = AB {}^{2}  + DE {}^{2}

 \:    \:  \:  \:  \:  \: \:  \: \sf = (AC {}^{2}  + BC {}^{2} ) + (CD {}^{2}  + CE {}^{2} )

 \:  \:  \:  \:  \:  \:  \:  \sf = (AC {}^{2} + CE {}^{2}  ) + (BC {}^{2}  + CD {}^{2} )

 \:  \:  \:  \:  \: \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf...(3)

 \sf \: Now \: in \: right \: triangle \: ACE,

 \sf \: AC {}^{2}  + CE {}^{2}  = AE {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: ...(4)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf(By \: Pythagoras \: Theorem)

 \sf \: and \: in \: right \: triangle \: BCD,

 \sf \: BC {}^{2}  + CD {}^{2}  = BD {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:... (5)

 \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \sf(By \: Pythagoras \: Theorem)

 \sf \: Putting \: values \: from \: (4) \: and \: (5) \: in \: (3), \:

 \sf \: w e\: have,

 \sf \: RHS = AB {}^{2}  + DE {}^{2}  = AE {}^{2}  + BD {}^{2}  = LHS.

Answered by Anonymous
10

\large\underline\red{GIVEN:-}

\textbf{D and E are the points on the sides}\textbf{CA and CB respectively of a triangle}\textbf{ABC and right angled at C}

\large\underline\red{TO \: PROVE:-}

{AE^2+BD^2=AB^2+DE^2}

\large\underline\blue{NOTE:-}

\bold\green{(Pythagoras \: theorem)}

\textbf{In a right triangle the square of}\textbf{hypotenuse is equal to}\textbf{the square of other two sides}

{(hypotenuse)^2=(base)^2+(perpendicular)^2}

\large\underline\red{PROOF:-}

\textbf{According to Pythagoras theorem}

\bold\green{In \: triangle \: DCE}

{DE^2=DC^2+CE^2} ------(i)

\bold\green{In \: triangle \: ABC}

{AB^2=AC^2+CB^2} ------(ii)

\bold\green{In \: triangle \: ACE}

{AE^2=AC^2+CE^2} ------(iii)

\bold\green{In \: triangle \: BCD}

{BD^2=DC^2+CB^2}-------(iv)

\textbf{Adding (iii) and (iv)}

{AE^2+BD^2=(AC^2+CE^2)+(DC^2+CB^2)}

{AE^2+BD^2=AC^2+CE^2+DC^2+CB^2}

{AE^2+BD^2=(AC^2+CB^2)+(CE^2+DC^2)}

[using (i) and (ii) ]

{AE^2+BD^2=AB^2+DE^2}

Hence,

AE²+BD² = AB²+DE²----- proved

Attachments:
Similar questions