Math, asked by DA23, 9 months ago

d/dx(1/x^4secx) differentiate

Answers

Answered by ashishks1912
10

GIVEN :

The differential expression is \frac{d}{dx}(\frac{1}{x^4secx})

TO FIND :

The derivative of the given the differential expression

SOLUTION:

Given that the differential expression is \frac{d}{dx}(\frac{1}{x^4secx})

By using the Formulae in differentiation :

i) \frac{d}{dx}(\frac{u}{v})=\frac{v.\frac{du}{dx}-u.\frac{dv}{dx}}{v^2}

ii) \frac{d}{dx}(uv)=u.\frac{dv}{dx}+v.\frac{du}{dx} and

iii) \frac{d}{dx}(x^n)=n.x^{n-1}

\frac{d}{dx}(\frac{1}{x^4secx})

Now differentiating the above equation with respect to x we get

=\frac{x^4secx.\frac{d(1)}{dx}-1.\frac{d}{dx}(x^4secx)}{(x^4secx)^2}

By using the differentiation formula,

\frac{d}{dx}(c)=0 where c is a constant.

=\frac{x^4secx.(0)-1.\frac{d}{dx}(x^4secx)}{(x^4secx)^2}

=\frac{0-(x^4.(secxtanx)+secx.(4x^{4-1}))}{x^8sec^2x}

By using the differentiation formula,

\frac{d}{dx}(secx)=secxtanx

=-\frac{x^4.(secxtanx)+secx.(4x^3)}{x^8sec^2x}

=\frac{-4x^3secx-x^4secxtanx}{x^8sec^2x}

=\frac{-4x^3secx}{x^8sec^2x}-\frac{x^4secxtanx}{x^8sec^2x}

=-\frac{4}{x^8.x^{-3}secx}-\frac{tanx}{x^8.x^{-4}secx}

=-\frac{4}{x^{8-3}secx}-\frac{tanx}{x^{8-4}secx}

=-\frac{4}{x^{5}secx}-\frac{tanx}{x^{4}secx}

\frac{d}{dx}(\frac{1}{x^4secx})=-\frac{4}{x^{5}secx}-\frac{tanx}{x^{4}secx}

∴ the differentiation of the given expression \frac{d}{dx}(\frac{1}{x^4secx})  is -\frac{4}{x^{5}secx}-\frac{tanx}{x^{4}secx}

Answered by pranjalthunder
2

Answer:

Step-by-step explanation:

Attachments:
Similar questions