Physics, asked by shanmukha43, 3 months ago

d/dx ( log base e (sin x))​

Answers

Answered by Anonymous
5

Explanation:

 \frac{d}{dx}( log_{e}( sinx ))

Supposed that:-

 \scriptsize \: sinx = u \:  \: then \:  \:  log_{e}(sinx)  =  log_{e}(u)

 \frac{dy}{dx}  =  \frac{d}{dx}( log_{e}(u)) \times  \frac{du}{dx}

 =  \frac{1}{u}  \times  \frac{du}{dx}   \: (\because \frac{d}{dx}( log_{e}(x)) =  \frac{1}{x} )

 =  \frac{1}{sinx}  \times  \frac{d}{dx} (sinx) \: ( \because \: u = sinx)

   \scriptsize \:  = cosecx \times cosx \: ( \because \:  \frac{1}{sinx}  = cosecx \: and \:  \frac{d}{dx} sinx = cosx)

I hope it is helpful

Similar questions