Math, asked by TbiaSupreme, 1 year ago

d/dx xˣ=.... (x>0),Select Proper option from the given options.
(a) xˣ-1
(b) xˣ
(c) 0
(d) xˣ(1+log x)

Answers

Answered by siddhartharao77
0

Given : d/dx(x^x)

=> \frac{d}{dx} (e^{logx(x)})

=> e^{xlogx} * \frac{d}{dx}[x log (x)]

=> (\frac{d}{dx}[x] * log(x) + x * \frac{d}{dx}[log(x)]) * e^{logx}x

=> (1 * log x + \frac{1}{x} * x) * e^{xlogx}

=> e^{x log x} (log x + 1)

=> x^x(log x + 1)



Hope this helps!

Answered by abhi178
0
we have to find the value of \bf{\frac{d}{dx}x^x}

\frac{d}{dx}x^x=\frac{d}{dx}e^{xlogx}

\qquad=e^{xlogx}\frac{d\{xlogx\}}{dx}

\qquad=x^x.[x\frac{d(logx)}{dx}+logx\frac{dx}{dx}]

\qquad=x^x[x.\frac{1}{x}+logx.1]

\qquad=x^x[1+logx]

hence , answer is x^x(1 + logx).
Similar questions