Math, asked by dev357155, 7 months ago


(d) Find the centre of the circle passing through the points (3,0), (2, √5) and (-2√2, -1).​

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\textsf{The given circle passes through}

\mathsf{(3,0),(2,\sqrt{5})\;and\;(-2\sqrt{2},-1)}

\underline{\textsf{To find:}}

\textsf{Centre of the circle passes through given 3 points}

\underline{\textsf{Solution:}}

\textsf{Let the given 3 points be}

\mathsf{A(3,0),B(2,\sqrt{5})\;and\;C(-2\sqrt{2},-1)}

\textsf{Let P(h,k) be the centre of the circle}

\mathsf{Then,\;PA=PB=PC}

\implies\mathsf{\sqrt{(h-3)^2+k^2}=\sqrt{(h-2)^2+(k-\sqrt{5})^2}=\sqrt{(h+2\sqrt{2})^2+(k+1)^2}}

\mathsf{Consider,}

\implies\mathsf{\sqrt{(h-3)^2+k^2}=\sqrt{(h-2)^2+(k-\sqrt{5})^2}}

\implies\mathsf{\sqrt{h^2+9-6h+k^2}=\sqrt{h^2+4-4h+k^2+5-2\sqrt{5}k}}

\implies\mathsf{h^2+9-6h+k^2=h^2+4-4h+k^2+5-2\sqrt{5}k}

\implies\mathsf{-6h=-4h-2\sqrt{5}k}

\implies\mathsf{-2h=-2\sqrt{5}k}

\implies\mathsf{h=\sqrt{5}k}........(1)

\mathsf{Also}

\implies\mathsf{\sqrt{(h-3)^2+k^2}=\sqrt{(h+2\sqrt{2})^2+(k+1)^2}}

\implies\mathsf{h^2+9-6h+k^2=h^2+8+4\sqrt{2}h+k^2+1+2k}

\implies\mathsf{-6h=4\sqrt{2}h+2k}

\implies\mathsf{(-6-4\sqrt{2})h=2k}

\implies\mathsf{(-6-4\sqrt{2})\sqrt{5}k=2k}

\implies\mathsf{((-6-4\sqrt{2})\sqrt{5}-2)k=0}

\implies\mathsf{k=0}

\mathsf{Put\;k=0\;in\;(1),\;h=0}

\therefore\boxed{\bf\textsf{Centre of the circle is (0,0)}}

\underline{\textsf{Find more:}}

Find the centre of a circle passing through (5,-8), (2,-9) and (2,1)

https://brainly.in/question/2157999

Find the equation of the circle passing through the points (1,2),(3,-4)and (5,-6)find the centre and rafius in each case

https://brainly.in/question/5281562

Find the equation of circle which passes through points (5,-8),(2,-9) and(2,1). Find also the coordinates of its centre and radius

https://brainly.in/question/7466726

Similar questions