D is a point on the side BC of a triangle ABC such that angle ADC = angle BAC Show that CA square=CB
Answers
Answered by
550
In ΔADC and ΔBAC,
∠ADC = ∠BAC (Given)
∠ACD = ∠BCA (Common angle)
∴ ΔADC ~ ΔBAC (By AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
∴ CA/CB =CD/CA
⇒ CA2 = CB.CD.
An alternate method:
Given in ΔABC, ∠ADC = ∠BAC
Consider ΔBAC and ΔADC
∠ADC = ∠BAC (Given)
∠C = ∠C (Common angle)
∴ ΔBAC ~ ΔADC (AA similarity criterion)
⇒
∴ CB x CD = CA²
Hope This Helps :)
Attachments:
Answered by
235
please mark as brainliest answer
Attachments:
Similar questions
English,
7 months ago
Political Science,
7 months ago
Math,
1 year ago
World Languages,
1 year ago
Math,
1 year ago