Math, asked by ransh89, 10 months ago

(d) LI
If x + y = 7 and xy = 6, the value of (x3 + y3) is :
(a) 91
(b) 133
(c) 217
2​

Answers

Answered by ButterFliee
9

\huge\underline{SoLution:-}

x + y = 7 ---1)

xy = 6 ---2)

\implies x + y = 7

\implies x = 7 - y

put the value of x in eq. 2)

\implies (7-y)y = 6

\implies 7y - y² = 6

\implies y² - 7y +6= 0

\implies y² -(6+1)y+6 = 0

\implies y² -6y -y +6 =0

\implies y(y-6)-1(y-6)

y = 1

y = 6

\huge\underline{ThAnKs...}

Answered by Anonymous
24

Given :-

→x + y = 7 -  -  -  -(i) \\→ xy = 6 -  -  -  -  - (ii)

To Find Out :-

 →{x}^{3}  +  {y}^{3} = \:?

\rule{200}{1}

Solution :-

→x + y = 7 \\ →x = 7 - y

Substitute the value of x into polynomial (i)

→xy = 6 \\ →(7 - y) \times y = 6 \\ →7y -  {y}^{2}  = 6 \\ → {y}^{2}   - 7y + 6 = 0 \\ → {y}^{2}    - 6y - y + 6 = 0 \\ → {y}(y - 6) - 1(y - 6) = 0 \\ →(y - 1)(y - 6) = 0

\rule{200}{1}

First Value of y :-

→y - 1 = 0 \\→ y = 1

Substitute the value of y into polynomial (i) :-

→x + y = 7 \\ →x + 1 = 7 \\ →x = 7 - 1 \\→ x = 6

\rule{200}{1}

Second Value of y :-

→y - 6 = 0 \\ →y = 6

Substitute the value of y into (i) :-

→x + y = 7 \\ →x + 6 = 7 \\ →x = 7 - 6 \\→ x = 1

\rule{200}{1}

Hence the value of x and y are

x = 1 and 6

y = 6 and 1

\rule{200}{1}

Now come to the question :-

 →{x}^{3}  +  {y}^{3}

Using the identity :-

  •  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy)

→(x + y)( {x}^{2}  +  {y}^{2}  - xy)

while x = 1 and y = 6 :-

→(1 + 6)( {1}^{2}  +  {6}^{2}  - 6 \times 1) \\→ 7 \times (1 + 36 - 6) \\ →7 \times (31) \\→ 217

\rule{200}{1}

Hence :-

 \boxed{{x}^{3}  +  {y}^{3}  = 217}

Similar questions