Math, asked by Anonymous, 9 months ago

The figure below is made of 2 rectangular prisms.
What is the volume of this figure?

Attachments:

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Total\:volume=162\:in^{3}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Fiven : }} \\  \tt:  \implies Length( l_{1}) = 9 \: in \\  \\  \tt:  \implies Breadth( b_{1}) = 5 \: in \\  \\ \tt:  \implies Heigth( h_{1}) = 2 \: in  \\  \\ \tt:  \implies Length( l_{2}) = 9 \: in \\  \\  \tt:  \implies Breadth( b_{2}) = 8 \: in \\  \\ \tt:  \implies Heigth( h_{1}) = 1 \: in  \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt:  \implies Volume \: of \: figure ?

• According to given question :

 \tt \circ \:  l_{1}   = 9 \: in \\  \\ \tt \circ \:  b_{1}   = 5 \: in\\   \\\tt \circ \:  h_{1}   = 2 \: in  \\ \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: cuboid =  l_{1} \times  b_{1} \times  h_{1} \\  \\ \tt:  \implies Volume \: of \: cuboid =9 \times 5 \times 2 \\  \\ \tt:  \implies Volume \: of \: cuboid =90 \:  {in}^{3}  \\  \\  \tt \circ \:  l_{2}   = 9 \: in \\  \\ \tt \circ \:  b_{2}   = 8 \: in\\   \\\tt \circ \:  h_{2}   = 1 \: in  \\ \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: cuboid =  l_{2} \times  b_{2} \times  h_{2} \\  \\ \tt:  \implies Volume \: of \: cuboid =9 \times 8 \times 1\\  \\ \tt:  \implies Volume \: of \: cuboid =72\:  {in}^{3}   \\  \\  \bold{For \: total \: volume : } \\  \tt:  \implies Total \: volume =  v_{1} +  v_{2} \\  \\ \tt:  \implies Total \: volume = 90 + 72 \\  \\  \green{\tt:  \implies Total \: volume = 162 \:  {in}^{3} }

Answered by Saby123
3

QUESTION :

The figure below is made of 2 rectangular prisms.

What is the volume of this figure?

SOLUTION :

 \begin{lgathered}\purple{\underline \bold{Fiven : }} \\ \tt: \leadsto Length( l_{1}) = 9 \: in \\ \\ \tt: \leadsto Breadth( b_{1}) = 5 \: in \\ \\ \tt: \leadsto Heigth( h_{1}) = 2 \: in \\ \\ \tt: \leadsto Length( l_{2}) = 9 \: in \\ \\ \tt: \leadsto Breadth( b_{2}) = 8 \: in \\ \\ \tt: \leadsto Heigth( h_{1}) = 1 \: in \\ \\ \blue{\underline \bold{To \: Find : }} \\ \tt: \implies Volume \: of \: figure \: - \end{lgathered}

 \begin{lgathered}\tt \circ \: l_{1} = 9 \: in \\ \\ \tt \circ \: b_{1} = 5 \: in\\ \\\tt \circ \: h_{1} = 2 \: in \\ \\ \bold{As \: we \: know \: that} \\ \tt: \implies Volume \: of \: cuboid = l_{1} \times b_{1} \times h_{1} \\ \\ \tt: \implies Volume \: of \: cuboid =9 \times 5 \times 2 \\ \\ \tt: \implies Volume \: of \: cuboid =90 \: {in}^{3} \\ \\ \tt \circ \: l_{2} = 9 \: in \\ \\ \tt \circ \: b_{2} = 8 \: in\\ \\\tt \circ \: h_{2} = 1 \: in \\ \\ \bold{As \: we \: know \: that} \\ \tt: \implies Volume \: of \: cuboid = l_{2} \times b_{2} \times h_{2} \\ \\ \tt: \implies Volume \: of \: cuboid =9 \times 8 \times 1\\ \\ \tt: \implies Volume \: of \: cuboid =72\: {in}^{3} \\ \\ \bold{For \: total \: volume : } \\ \tt: \implies Total \: volume = v_{1} + v_{2} \\ \\ \tt: \implies Total \: volume = 90 + 72 \\ \\ \blue{\tt: \implies Total \: volume = 162 \: {in}^{3} }\end{lgathered}

Attachments:
Similar questions