Math, asked by pasupunurishruthi171, 6 months ago

(D3-3D2+3D-1)y=(x+1)ex


Answers

Answered by pulakmath007
5

SOLUTION

TO SOLVE

\displaystyle\sf{ ({D}^{3}  - 3 {D}^{2}  + 3D - 1)y = (x + 1) {e}^{x} }

EVALUATION

Here the given differential equation is

\displaystyle\sf{ ({D}^{3}  - 3 {D}^{2}  + 3D - 1)y = (x + 1) {e}^{x} }

Now complementary function is obtained by solving the differential equation

\displaystyle\sf{ ({D}^{3}  - 3 {D}^{2}  + 3D - 1)y = 0 }

Let

\displaystyle\sf{ y =  {e}^{mx} }

be the trial solution

Then the auxiliary equation is

\displaystyle\sf{ ({m}^{3}  - 3 {m}^{2}  + 3m - 1) = 0 }

\displaystyle\sf{  \implies \: {(m - 1)}^{3}  = 0 }

\displaystyle\sf{  \implies \: m = 1,1,1}

Thus three roots are real and equal

So the complementary function is

 \sf{y_{_{C.F}} = (a + bx + c {x}^{2} ) {e}^{x} }

Now the particular solution is obtained as below

\displaystyle\sf{ y_{_{P.I}} =  \frac{1}{({D}^{3}  - 3 {D}^{2}  + 3D - 1)} (x + 1) {e}^{x} }

\displaystyle\sf{ \implies \:  y_{_{P.I}} =  \frac{1}{{(D - 1)}^{3} } (x + 1) {e}^{x} }

\displaystyle\sf{ \implies \:  y_{_{P.I}} =  {e}^{x} \frac{1}{{(D  + 1- 1)}^{3} } (x + 1) }

\displaystyle\sf{ \implies \:  y_{_{P.I}} =  {e}^{x} \frac{1}{{D  }^{3} } (x + 1) }

\displaystyle\sf{ \implies \:  y_{_{P.I}} =  {e}^{x}  \:  \frac{ {(x + 1)}^{4} }{24}  }

\displaystyle\sf{ \implies \:  y_{_{P.I}} =   \:  \frac{ {(x + 1)}^{4} }{24}   \: {e}^{x} }

Hence the required solution is

 \sf{y =y_{_{C.F}} +  y_{_{P.I}}}

 \displaystyle \sf{ \implies \: y = (a + bx + c {x}^{2} ) {e}^{x}  + \frac{ {(x + 1)}^{4} }{24}   \: {e}^{x} }

FINAL ANSWER

  \boxed{ \:   \: \displaystyle \sf{  \: y = (a + bx + c {x}^{2} ) {e}^{x}  + \frac{ {(x + 1)}^{4} }{24}   \: {e}^{x} } \:  \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Similar questions