Math, asked by mister2543, 11 months ago

Daniel goes to a store and buys 4 lbs of peanuts and 5 lbs of almonds for $44. Josh goes to the same store and buys 2 lbs of peanuts and 4 lbs of almonds for $31. What is the cost of 1 pound of peanuts?

Answers

Answered by saivivek16
1

Step-by-step explanation:

Aloha !

Let a be peanuts and b be almonds .

Now,

4a+5b=44--->1×1

2a+4b=31---->2×2

Solving 1 and 2,

4a+5b=44

4a+8b=62

-_________

-3b=18

b= - 18/3

b=-6

Now, replacing in any equation .

2a+4b=31

2a+4(-6)=31

2a-24=31

2a=55

a=55/2

a=22.5

Verification :-

2(55/2)+4(-6)=31

55-24=31

31=31

Thank you

@ Twilight Astro ✌️☺️♥️

Answered by anshi60
21

\huge{\bold{ Solution:-}}

Let \: the \: cost \: of \: peanuts \: be \: x \: and \:  \\ cost \: of \: almonds \: be \: y. \\  \\ {\red{\small{{\mathbb{According \: to \: question:-}}}}} \\  \\ 4x + 5y = 44 - (1) \\  \\ 2x + 4y = 31 - (2) \\  \\ multiply \: by \: 2 \: in \: equ. \: (2) =  \\  \\ 4x + 8y = 62 - (3) \\  \\ subtracting \: equ \: (2) \: and \: (3) =  \\  \\ 4x + 5y - (4x + 8y) = 44 - 62 \\  \\ 4x + 5y - 4x - 8y =  - 18 \\  \\  - 3y =  - 18 \\  \\ y =  \frac{18}{3}  \\  \\ \small{\blue{\underline{\purple{\mathbb{y = 6}}}}} \\  \\ putting \: y = 6 \: in \: equ. \: (1) \\  \\ 4x + 5y = 44 \\  \\ 4x + 5 \times 6 = 44 \\  \\ 4x + 30 = 44 \\  \\ 4x = 44 - 30 \\  \\ 4x = 14 \\  \\ x =  \frac{14}{4}  \\  \\ \small{\blue{\underline{\purple{\mathbb{x =  \frac{7}{2} }}}}} \\   \\ x = 3.5  \\  \\ Therefore, \: the \: cost \: of \: peanuts \: is \:   \: 3.5 \\  \\ \small{\red{\underline{\purple{\mathbb{Verification}}}}} \\  \\ putting \: x \: and \: y \: in \: equ \: (1) =  \\  \\ 4x + 5y = 44 \\  \\ LHS =  \\ =  4 \times  \frac{7}{2}  + 5 \times 6 \\  \\  = 14 + 30 \\  \\  = 44 = RHS \\  \\ Verified

Hope its helpful ❤

Similar questions