Math, asked by Kritigandhi, 8 days ago

Date Example 6: In fig. 6.31. OA. 0D = 0C.0D show that LA=LC. LB = Le and LD​

Attachments:

Answers

Answered by velpulaaneesh123
18

Answer:

\red{Given:-}

OA \times OB =OC \times OD

\red{To \:prove:-}

\angle A = \angle C\:\: and\:\:\angle B=\angle D

\red{Proof:-}

OA . OB = OC . OD

\frac{OA}{OC}  = \frac{OD}{OB} \:\:...(1)

In\: \triangle AOD  \: and\: \triangle COB

\frac{OA}{OC}  = \frac{OD}{OB}  \: \: \: \: \: \:(From(1))

\angle AOD=\angle COB \: \: \: \: \: \: \: \: \: \: \: \:(vertically\;opposite \:angle)

Using SAS similarity criterion

So,\triangle AOD \approx \triangle COB

We know that if two triangles are similar so,their corresponding angles are equal

so,\angle A= \angle C \:and \: \:  \angle D   =  \angle B

\orange{Hence\:\: Proved}

Similar questions