Math, asked by meghapanwar003, 10 months ago

Date
Page

lf 16 cot x = 12, then sin x- cos x /
sin x + cos x is equal ? ​

Answers

Answered by Anonymous
12

Answer:

\sf{\dfrac{1}{7}}

Step-by-step explanation:

As we know,

16 cot x = 12

⇢ cot x = 12/16

Now simplify 12/16, we get:

⇢ 1/6 = 3/4

The the value of cot x is also equal to (3/4).

here,

  • 3 = Base,
  • 4 = Perpendicular.

Using Pythagorean theorem:

★ H² = (P)² +(B)² ★

Know terms:

here,

  • H² denotes hypotenuse²,
  • P² denotes perpendicular²,
  • B² denotes Base².

Calculations:

\sf{H^{2} = (4)^{2} + 3^{2}}

\sf{H^{2} = 16 + 9  = 25}

\sf{H = 25 = \sqrt{25}}

\sf{H= \sqrt{25} = 45}

Therefore, 5 is the perpendicular.

  • sin x = P/H

⇢ sin x = 4/5

  • cos x = B/H

⇢ cos x = 3/5

Now,

\sf{\dfrac{sin \: x - cos \:x}{sin \: x + cos \: x}}

\sf{\bigg(\dfrac{4}{5} \pm \dfrac{3}{5} \bigg)}

\sf{\bigg(\dfrac{4 \pm 3}{5}\bigg)}

\sf{\bigg(\dfrac{1}{5} \times \dfrac{5}{7}\bigg)}

\sf{\dfrac{1}{7}}

Therefore, 1/7 is the required answer.


Anonymous: Keep up with the good work!
TheMoonlìghtPhoenix: Great!
BloomingBud: wonderful
Answered by mysticd
9

 Given \: 16 cot x = 12

 \implies cot x = \frac{12}{16}

 \implies cot x = \frac{3}{4} \: --(1)

 \red{ Value \: of \: \frac{sin x - cos x }{sin x + cos x }}

/* Dividing numerator and denominator by sin x , we get */

 = \frac{ 1 - \frac{cos x }{sin x }}{ 1 + \frac{ cos x }{sin x }}

 = \frac{ 1 - cot x }{ 1 + cot x }

 = \frac{ 1 - \frac{3}{4}}{ 1 + \frac{3}{4}}

 = \frac{ \frac{ 4 - 3}{4}}{ \frac{4+3}{4}}

 = \frac{ 1}{7}

Therefore.,

 \red{ Value \: of \: \frac{sin x - cos x }{sin x + cos x }}

\green { = \frac{ 1}{7}}

•••♪

Similar questions