Math, asked by abhiboha, 1 month ago

Date
Pago
is
If x= √5 +2, then an
equal
x -1/x​

Answers

Answered by IntrovertLeo
25

Given:

The value of x -

  • \bf \to x = \sqrt{5} + 2

What To Find:

We have to find -

  • The value of \bf \to x - \dfrac{1}{x}

Solution:

  • Finding the value of -

\bf \to \dfrac{1}{x}

We know that -

\bf \to x = \sqrt{5} + 2

Substitute the value,

\bf \to \dfrac{1}{x} = \dfrac{1}{\sqrt{5} + 2}

Rationalise the denominator with its conjugate,

\bf \to \dfrac{1}{x} = \dfrac{1}{\sqrt{5} + 2} \times \dfrac{\sqrt{5} - 2}{\sqrt{5} - 2}

Take them as common,

\bf \to \dfrac{1}{x} = \dfrac{1 \times (\sqrt{5} - 2)}{(\sqrt{5} + 2) \times (\sqrt{5} - 2)}

Solve the numerator,

\bf \to \dfrac{1}{x} = \dfrac{\sqrt{5} - 2}{(\sqrt{5} + 2) \times (\sqrt{5} - 2)}

Solve the denominator by using the identity (a +  b) (a - b) = a² - b²,

\bf \to \dfrac{1}{x} = \dfrac{\sqrt{5} - 2}{(\sqrt{5})^2 - (2)^2}

Find the squares,

\bf \to \dfrac{1}{x} = \dfrac{\sqrt{5} - 2}{5 - 4}

Subtract the values,

\bf \to \dfrac{1}{x} = \dfrac{\sqrt{5} - 2}{1}

Can be written as,

\bf \to \dfrac{1}{x} = \sqrt{5} - 2

  • Finding the value of -

\bf \to x - \dfrac{1}{x}

Substitute the values,

\bf \to x - \dfrac{1}{x} =(\sqrt{5} + 2) - (\sqrt{5} - 2)

Remove the brackets,

\bf \to x - \dfrac{1}{x} =\sqrt{5} + 2 - \sqrt{5} + 2

Rearrange the terms,

\bf \to x - \dfrac{1}{x} =\underline{\sqrt{5} - \sqrt{5}} + \underline{2 + 2}

Solve the first term,

\bf \to x - \dfrac{1}{x} =0 + \underline{2 + 2}

Solve the second term,

\bf \to x - \dfrac{1}{x} =0 + 4

Can be written as,

\bf \to x - \dfrac{1}{x} = 4

Final Answer:

∴ Thus, the value of \bf x - \dfrac{1}{x} is \bf 4.

Similar questions