Math, asked by hshelke2004, 1 day ago

Date tan 70°- tan 50° -tan 20 = ton 70 x tans 50 X tan 20​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

Prove that

\rm \: tan70\degree  - tan50\degree  - tan20\degree  = tan70\degree  \: tan50\degree  \: tan20\degree  \\

\large\underline{\sf{Solution-}}

We know,

\rm \: 70\degree  = 50\degree  + 20\degree  \\

So,

\rm \:tan 70\degree  = tan(50\degree  + 20\degree ) \\

We know that

\boxed{\sf{  \: \: tan(x + y) \:  =  \:  \frac{tanx + tany}{1 - tanx \: tany} \: }} \\

So, on using this identity, we get

\rm \: tan70\degree  =  \frac{tan50\degree  + tan20\degree }{1 - tan50\degree  \: tan20\degree }  \\

\rm \: tan70\degree  - tan70\degree tan50\degree tan20\degree  = tan50\degree  + tan20\degree  \\

On rearranging the terms, we get

\rm \: tan70\degree - tan50\degree  - tan20\degree  = tan70\degree tan50\degree tan20\degree   \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \: }} \\

\boxed{\sf{  \:sin(x  -  y) = sinx \: cosy \:   -   \: siny \: cosx \: }} \\

\boxed{\sf{  \:cos(x + y) = cosx \: cosy \:   -   \: siny \: sinx \: }} \\

\boxed{\sf{  \:cos(x  -  y) = cosx \: cosy \: + \: siny \: sinx \: }} \\

\boxed{\sf{  \:tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \:  \: }} \\

\boxed{\sf{  \:tan(x - y) =  \frac{tanx -  tany}{1 + tanx \: tany}  \:  \: }} \\

Answered by kvalli8519
3

Refer the given attachment

Attachments:
Similar questions